Skip to main content
Log in

Deletion of both methionine sulfoxide reductase A and methionine sulfoxide reductase C genes renders Salmonella Typhimurium highly susceptible to hypochlorite stress and poultry macrophages

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salmonella Typhimurium survives and replicates inside the oxidative environment of phagocytic cells. Proteins, because of their composition and location, are the foremost targets of host inflammatory response. Among others, Met-residues are highly prone to oxidation. Methionine sulfoxide reductase (Msr), with the help of thioredoxin-thioredoxin reductase, can repair oxidized methionine (Met-SO) residues to Met. There are four methionine sulfoxide reductases localized in the cytosol of S. Typhimurium, MsrA, MsrB, MsrC and BisC. MsrA repairs both protein-bound and free ‘S’ Met-SO, MsrB repairs protein-bound ‘R’ Met-SO, MsrC repairs free ‘R’ Met-SO and BisC repairs free ‘S’ Met-SO. To assess the role(s) of various Msrs in Salmonella, few studies have been conducted by utilizing ΔmsrA, ΔmsrB, ΔmsrC, ΔmsrAΔmsrB, ΔmsrBΔmsrC and ΔbisC mutant strains of S. Typhimurium. Out of the above-mentioned mutants, ΔmsrA and ΔmsrC were found to play important role in the stress survival of this bacterium; however, the combined roles of these two genes have not been determined. In the current study, we have generated msrAmsrC double gene deletion strain (ΔmsrAΔmsrC) of S. Typhimurium and evaluated the effect of gene deletions on the survival of Salmonella against hypochlorite stress and intramacrophage replication. In in vitro growth curve analysis, ΔmsrAΔmsrC mutant strain showed a longer lag phase during the initial stages of the growth; however, it attained similar growth as the wild type strain of S. Typhimurium after 5 h. The ΔmsrAΔmsrC mutant strain has been highly (~ 3000 folds more) sensitive (p < 0.001) to hypochlorite stress. Further, ΔmsrA and ΔmsrAΔmsrC mutant strains showed more than 8 and 26 folds more susceptibility to poultry macrophages, respectively. Our data suggest that the deletion of both msrA and msrC genes severely affect the oxidative stress survival and intramacrophage proliferation of S. Typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availabilty

The raw data and mutant strains are available with corresponding author of this manuscript.

References

  1. Gahring LC, Heffron F, Finlay BB, Falkow S (1990) Invasion and replication of Salmonella Typhimurium in animal cells. Infect Immun 58:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buchmeier NA, Heffron FRED (1991) Inhibition of macrophage phagosome-lysosome fusion by Salmonella Typhimurium. Infect Immun 59(7):2232–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buchmeier NA, Heffron F (1990) Induction of Salmonella stress proteins upon infection of macrophages. Science 248(4956):730–732

    Article  CAS  PubMed  Google Scholar 

  4. Fang FC (2011) Antimicrobial actions of reactive oxygen species. M Bio 2(5):141–151

    Google Scholar 

  5. Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80(3):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192(2):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabiscol E, Tamarit Sumalla J, Ros Salvador J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  8. Aussel L, Zhao W, Hebrard M, Guilhon AA, Viala JP, Henri S, Chasson L, Gorvel JP, Barras F, Meresse S (2011) Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80(3):628–640

    Article  CAS  PubMed  Google Scholar 

  9. Buchmeier NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG, Fang FC (1995) DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95(3):1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denkel LA, Horst SA, Rouf SF, Kitowski V, Bohm OM, Rhen M, Jager T, Bange FC (2011) Methionine sulfoxide reductases are essential for virulence of Salmonella Typhimurium. PLoS ONE 6(11):26974

    Article  Google Scholar 

  11. Pesingi PK, Kumawat M, Behera P, Dixit SK, Agarwal RK, Goswami TK, Mahawar M (2017) Protein-L-Isoaspartyl Methyltransferase (PIMT) is required for survival of Salmonella Typhimurium at 42 °C and contributes to the virulence in poultry. Front Microbiol 8:361

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sarkhel R, Rajan P, Gupta AK, Kumawat M, Agarwal P, Shome A, Puii L, Mahawar M (2017) Methionine sulfoxide reductase A of Salmonella Typhimurium interacts with several proteins and abets in its colonization in the chicken. Biochem Biophys Acta 1861(12):3238–3245

    Article  CAS  Google Scholar 

  13. Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703(2):213–219

    Article  CAS  PubMed  Google Scholar 

  14. Weissbach H, Resnick L, Brot N (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703(2):203–212

    Article  CAS  PubMed  Google Scholar 

  15. Chang SY, McGARY EC, Chang SHING (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171(7):4071–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denkel LA, Rhen M, Bange FC (2013) Biotin sulfoxide reductase contributes to oxidative stress tolerance and virulence in Salmonella enterica serovar Typhimurium. Microbiology 159(Pt_7):1447–1458

    Article  CAS  PubMed  Google Scholar 

  17. Andrieu C, Vergnes A, Loiseau L, Aussel L, Ezraty B (2020) Characterisation of the periplasmic methionine sulfoxide reductase (MsrP) from Salmonella Typhimurium. Free Radic Biol Med 160:506–512

    Article  CAS  PubMed  Google Scholar 

  18. Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci 78(4):2155–2158

    Article  CAS  PubMed  Google Scholar 

  19. Moskovitz J, Weissbach H, Brot N (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc Natl Acad Sci 93(5):2095–2099

    Article  CAS  PubMed  Google Scholar 

  20. Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins identification of a new methionine sulfoxide reductase. J Biol Chem 276(52):48915–48920

    Article  CAS  PubMed  Google Scholar 

  21. Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci 104(23):9597–9602

    Article  CAS  PubMed  Google Scholar 

  22. Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A, Hacioglu E, Kwak GH, Koc A, Kim HY, Gladyshev VN (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284(7):4354–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tarrago L, Grosse S, Lemaire D, Faure L, Tribout M, Siponen MI, Kojadinovic-Sirinelli M, Pignol D, Arnoux P, Sabaty M (2020) Reduction of protein bound methionine sulfoxide by a periplasmic dimethyl sulfoxide reductase. Antioxidants 9(7):616

    Article  CAS  PubMed Central  Google Scholar 

  24. Boschi-Muller S, Azza S, Sanglier-Cianferani S, Talfournier F, Van Dorsselear A, Branlant G (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem 275(46):35908–35913

    Article  CAS  PubMed  Google Scholar 

  25. Trivedi RN, Agarwal P, Kumawat M, Pesingi PK, Gupta VK, Goswami TK, Mahawar M (2015) Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidativfe attack of neutrophils. Immunobiology 220(12):1322–1327

    Article  CAS  PubMed  Google Scholar 

  26. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12):66406645

    Article  Google Scholar 

  27. Sangpuii L, Dixit SK, Kumawat M, Apoorva S, Kumar M, Kappala D, Goswami TK, Mahawar M (2018) Comparative roles of clpA and clpB in the survival of S. Typhimurium under stress and virulence in poultry. Sci Rep 8(1):4481

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kappala D, Sarkhel R, Dixit SK, Mahawar M, Singh M, Ramakrishnan S, Goswami TK (2018) Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken macrophages. Immunobiology 223(6–7):501–507

    Article  CAS  PubMed  Google Scholar 

  29. Wizemann TM, Moskovitz J, Pearce BJ, Cundell D, Arvidson CG, So M, Weissbach H, Brot N, Masure HR (1996) Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc Natl Acad Sci 93(15):7985–7990

    Article  CAS  PubMed  Google Scholar 

  30. Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F, Jenkinson HF, Hammes WP, Hertel C (2005) A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 71(2):979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moskovitz J, Rahman MA, Strassman J, Yancey SO, Kushner SR, Brot N, Weissbach H (1995) Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol 177(3):502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ezraty B, Bos J, Barras F, Aussel L (2005) Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J Bacteriol 187(1):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dukan S, Nyström T (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12(21):3431–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cuny C, Lesbats M, Dukan S (2007) Induction of a global stress response during the first step of Escherichia coli plate growth. Appl Environ Microbiol 73(3):885–889

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270(23):13681–13687

    Article  CAS  PubMed  Google Scholar 

  36. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee WL, Gold B, Darby C, Brot N, Jiang X, De Carvalho LPS, Wellner D, St. John, G., Jacobs Jr, W.R. and Nathan, C. (2009) Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 71(3):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atack JM, Kelly DJ (2008) Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 154(8):2219–2230

    Article  CAS  PubMed  Google Scholar 

  39. Domigan NM, Charlton TS, Duncan MW, Winterbourn CC, Kettle AJ (1995) Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 270(28):16542–16548

    Article  CAS  PubMed  Google Scholar 

  40. Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, Fu X (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci 106(44):18686–18691

    Article  CAS  PubMed  Google Scholar 

  41. Khor HK, Fisher MT, Schöneich C (2004) Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO–). J Biol Chem 279(19):19486–19493

    Article  CAS  PubMed  Google Scholar 

  42. John GS, Brot N, Ruan J, Erdjument-Bromage H, Tempst P, Weissbach H, Nathan C (2001) Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci 98(17):9901–9906

    Article  Google Scholar 

  43. El Hassouni M, Chambost JP, Expert D, Van Gijsegem F, Barras F (1999) The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc Natl Acad Sci 96(3):887–892

    Article  CAS  PubMed  Google Scholar 

  44. Romsang A, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S (2013) Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J Bacteriol 195(15):3299–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace JM, Auffray Y, Sanguinetti M (2010) Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 78(9):3889–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Douglas T, Daniel DS, Parida BK, Jagannath C, Dhandayuthapani S (2004) Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bacteriol 186(11):3590–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh VK (2014) Lack of a functional methionine sulfoxide reductase (MsrB) increases oxacillin and H2O2 stress resistance and enhances pigmentation in Staphylococcus aureus. Can J Microbiol 60(9):625–628

    Article  CAS  PubMed  Google Scholar 

  48. Soriani FM, Kress MR, de Gouvêa PF, Malavazi I, Savoldi M, Gallmetzer A, Strauss J, Goldman MHS, Goldman GH (2009) Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and msrB). Fungal Genet Biol 46(5):410–417

    Article  CAS  PubMed  Google Scholar 

  49. Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci 94(18):9585–9589

    Article  CAS  PubMed  Google Scholar 

  50. Nasreen M, Dhouib R, Hosmer J, Wijesinghe HGS, Fletcher A, Mahawar M, Essilfie AT, Blackall PJ, McEwan AG, Kappler U (2020) Peptide methionine sulfoxide reductase from Haemophilus influenzae is required for protection against HOCl and affects the host response to infection. ACS Infect Dis. 6(7):1928–1939

    Article  CAS  PubMed  Google Scholar 

  51. Wang S, Deng K, Zaremba S, Deng X, Lin C, Wang Q, Tortorello ML, Zhang W (2009) Transcriptomic response of Escherichia coli O157: H7 to oxidative stress. Appl Environ Microbiol 75(19):6110–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Small DA, Chang W, Toghrol F, Bentley WE (2007) Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 74(1):176–185

    Article  CAS  PubMed  Google Scholar 

  53. Fields PI, Swanson RV, Haidaris CG, Heffron F (1986) Mutants of Salmonella Typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci 83(14):5189–5193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The current study was funded by the Department of Biotechnology, India (Grant No.: BT/PR13689/BRB/10/1399/2015) and NASF, ICAR, India (Grant No.: NFBSFARA/BS-3012/2012-13). We thank our Director, ICAR-Indian Veterinary Research Institute (IVRI) for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

SSN and AS conducted the growth curve analysis experiments. SSN and SA conducted HOCl assays. TKSC, SSN and RS conducted macrophage assays. MK and MM created double gene deletion strain. SSN and MM wrote the manuscript and A, AV and BK edited the manuscript.

Corresponding authors

Correspondence to Abhishek or Manish Mahawar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The protocol for isolation of peripheral blood mononuclear cells from poultry blood was approved by the Institute Animal Ethics Committee, ICAR-IVRI, Izatnagar, India, vide letter number F.26-2/2019/JD(R) dated January 6th, 2020.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S.S., Chauhan, T.K.S., Kumawat, M. et al. Deletion of both methionine sulfoxide reductase A and methionine sulfoxide reductase C genes renders Salmonella Typhimurium highly susceptible to hypochlorite stress and poultry macrophages. Mol Biol Rep 48, 3195–3203 (2021). https://doi.org/10.1007/s11033-021-06381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06381-2

Keywords

Navigation