Skip to main content
Log in

Selective inhibition of acylpeptide hydrolase in SAOS-2 osteosarcoma cells: is this enzyme a viable anticancer target?

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this, most of the human serine hydrolases remain poorly characterized with respect to their biological functions and substrates and only a limited number of in vivo active inhibitors have been so far identified. Acylpeptide hydrolase (APEH) is a member of the prolyl-oligopeptidase class, with a unique substrate specificity, that has been suggested to have a potential oncogenic role. In this study, a set of peptides was rationally designed from the lead compound SsCEI 4 and in vitro screened for APEH inhibition. Out of these molecules, a dodecapeptide named Ala 3 showed the best inhibitory effects and it was chosen as a candidate for investigating the anti-cancer effects induced by inhibition of APEH in SAOS-2 cell lines. The results clearly demonstrated that Ala 3 markedly reduced cell viability via deregulation of the APEH-proteasome system. Furthermore, flow cytometric analysis revealed that Ala 3 anti-proliferative effects were closely related to the activation of a caspase-dependent apoptotic pathway. Our findings provide further evidence that APEH can play a crucial role in the pathogenesis of cancer, shedding new light on the great potential of this enzyme as an attractive target for the diagnosis and the quest for selective cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  2. Trezza A, Cicaloni V, Pettini F, Spiga O (2020) Chapter 2-Potential roles of protease inhibitors in anticancer therapy. In: Gupta SP (ed) Cancer-leading proteases structures, functions, and inhibition. Academic Press, Massachusetts, pp 13–49

    Chapter  Google Scholar 

  3. Poddar NK, Maurya SK, Saxena V (2017) Role of serine proteases and inhibitors in cancer. In: Chakraborti S, Dhalla N (eds) Proteases in physiology and pathology. Springer, Singapore, pp 257–287

    Chapter  Google Scholar 

  4. Long JZ, Cravatt BF (2011) The metabolic serine hydrolases and their functions in mammalian physiology and disease. J Chem Rev 111:6022–6063

    Article  CAS  Google Scholar 

  5. Bachovchin DA, Cravatt BF (2012) The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 11:52–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adibekian A, Martin BR, Wang C, Hsu KL, Bachovchin DA, Niessen S et al (2011) Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat Chem Biol 7:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marshall I, Prince D, Johnson H, Ruiz D, Nicholaou M, Covey TM (2019) Analyzing the activity and expression of acyl peptide enzyme hydrolase (APEH) in the blood serum of patients with type II diabetes. BIOS 90:70–78

    Article  CAS  Google Scholar 

  8. Polgár L (2002) The prolyl oligopeptidase family. Cell Mol Life Sci 59:349–362

    Article  PubMed  Google Scholar 

  9. Witheiler J, Wilson DB (1972) The purification and characterization of a novel peptidase from sheep red cells. J Biol Chem 247:2217–2221

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu K, Kiuchi Y, Ando K, Hayakawa M, Kikugawa K (2004) Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem Biophys Res Commun 324:140–146

    Article  CAS  PubMed  Google Scholar 

  11. Palmieri G, Cocca E, Gogliettino M, Valentino R, Ruvo M, Cristofano G et al (2017) Low erythrocyte levels of proteasome and acyl-peptide hydrolase (APEH) activities in alzheimer’s disease: a sign of defective proteostasis? J Alzheimer’s Dis 60:1097–1106

    Article  CAS  Google Scholar 

  12. Fujino T, Watanabe K, Beppu M, Kikugawa K, Yasuda H (2000) Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. Biochim Biophys Acta 1478:102–112

    Article  CAS  PubMed  Google Scholar 

  13. Yamin R, Bagchi S, Hildebrant R, Scaloni A, Widom RL, Abraham CR (2009) Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-beta peptide. Mol Neurodegener 4:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jessani N, Liu Y, Humphrey M, Cravatt BF (2002) Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. PNAS 99:10335–10340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erlandsson R, Boldog F, Persson B, Zabarovsky ER, Allikmets RL, Sümegi J et al (1991) The gene from the short arm of chromosome 3, at D3F15S2, frequently deleted in renal cell carcinoma, encodes acylpeptide hydrolase. Oncogene 6:1293–1295

    CAS  PubMed  Google Scholar 

  16. Yamaguchi M, Kambayashi D, Toda J, Sano T, Toyoshima S, Hojo H (1999) Acetylleucine chloromethyl ketone, an inhibitor of acylpeptide hydrolase, induces apoptosis of U937 cells. Biochem Biophys Res Commun 263:139–142

    Article  CAS  PubMed  Google Scholar 

  17. Scaloni A, Jones W, Pospischil M, Sassa S, Schneewind O, Popowicz AM et al (1992) Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines. J Lab Clin Med 12:546–552

    Google Scholar 

  18. Palumbo R, Gogliettino M, Cocca E, Iannitti R, Sandomenico A, Ruvo M et al (2016) APEH inhibition affects osteosarcoma cell viability via downregulation of the proteasome. Int J Mol Sci 17:e1614

    Article  PubMed  CAS  Google Scholar 

  19. Bergamo P, Cocca E, Palumbo R, Gogliettino M, Rossi M, Palmieri G (2013) RedOx status, proteasome and APEH: insights into anticancer mechanisms of t10, c12-conjugated linoleic acid isomer on A375 melanoma cells. PLoS ONE 8:e80900

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palmieri G, Bergamo P, Luini A, Ruvo M, Gogliettino M, Langella E et al (2011) Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation. PLoS ONE 6:e25888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W et al (2004) Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2OS in comparison to human osteoblasts. Anticancer Res 24:3743–3748

    CAS  PubMed  Google Scholar 

  22. Isfort RJ, Cody DB, Lovell G, Doersen CJ (1995) Analysis of oncogenes, tumor suppressor genes, autocrine growth-factor production, and differentiation state of human osteosarcoma cell-lines. Mol Carcinogen 14:170–178

    Article  CAS  Google Scholar 

  23. Niforou KM, Anagnostopoulos AK, Vougas K, Kittas C, Gorgoulis VG, Tsangaris GT (2008) The proteome profile of the human osteosarcoma U2OS cell line. Cancer Genom Proteom 5:63–78

    CAS  Google Scholar 

  24. Yu Y, Harris RI, Yang JL, Anderson HC, Walsh WR (2004) Differential expression of osteogenic factors associated with osteoinductivity of human osteosarcoma cell lines. J Biomed Mater Res 70A:122–128

    Article  CAS  Google Scholar 

  25. Chen CC, Hwang JK, Yang JM (2009) (PS)2–v2: template-based protein structure prediction server. BMC Bioinform 10:366

    Article  CAS  Google Scholar 

  26. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Method Enzymol 374:461–491

    Article  CAS  Google Scholar 

  27. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  28. Kiss AL, Hornung B, Rádi K, Gengeliczki Z, Sztáray B, Juhász T et al (2007) The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity. J Mol Biol 368:509–520

    Article  CAS  PubMed  Google Scholar 

  29. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  30. Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    CAS  PubMed  Google Scholar 

  31. DeLano WL (2002) The pymol molecular graphics system. DeLano Scientific, Palo Alto. http://www.pymol.org

  32. Vangone A, Spinelli R, Scarano V, Cavallo L, Oliva R (2011) COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics 27:2915–2916

    Article  CAS  PubMed  Google Scholar 

  33. Caraglia M, Passeggio A, Beninati S, Leardi A, Nicolini L, Improta S et al (1997) Interferon alpha2 recombinant and epidermal growth factor modulate proliferation and hypusine synthesis in human epidermoid cancer KB cells. Biochem J 324:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  37. Aljoundi A, Bjij I, El Rashedy A, Soliman MES (2020) Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J 39:97–105

    Article  CAS  PubMed  Google Scholar 

  38. Palmieri G, Langella E, Gogliettino M, Saviano M, Pocsfalvi G, Rossi M (2010) A novel class of protease targets of phosphatidylethanolamine-binding proteins (PEBP): a study of the acylpeptide hydrolase and the PEBP inhibitor from the archaeon Sulfolobus solfataricus. Mol Biosyst 6:2498–2507

    Article  CAS  PubMed  Google Scholar 

  39. Palmieri G, Catara G, Saviano M, Langella E, Gogliettino M, Rossi M (2009) First archaeal PEPB-serine protease inhibitor from Sulfolobus solfataricus with noncanonical amino acid sequence in the reactive-site loop. J Proteome Res 8:327–334

    Article  CAS  PubMed  Google Scholar 

  40. Wright H, Kiss AL, Szeltner Z, Polgár L, Fülöp V (2005) Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase. Acta Crystallogr F 61:942–944

    Article  CAS  Google Scholar 

  41. Durand A, Villard C, Giardina T, Perrier J, Juge N, Puigserver A (2003) Structural properties of porcine intestine acylpeptide hydrolase. J Protein Chem 22:183–191

    Article  CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  43. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu Z, Zhang G, Zhang Y, Hua P, Fang M, Wu M et al (2018) Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol Appl Pharm 352:46–58

    Article  CAS  Google Scholar 

  45. Zeng Z, Rulten SL, Breslin C, Zlatanou A, Coulthard V, Caldecott KW (2017) Acylpeptide hydrolase is a component of the cellular response to DNA damage. DNA Repair 58:52–61

    Article  CAS  PubMed  Google Scholar 

  46. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Giovanni Del Monaco for his assistance with statistical analysis.

Funding

This research was supported by Regione Campania—“PREMIO-Infrastruttura per la Medicina di Precisione in Oncologia”. Manifestazione di interesse per la realizzazione di progetti di sviluppo/potenziamento di infrastrutture di ricerca strategica regionali per la lotta alle patologie oncologiche (RIS3)-POR CAMPANIA FESR 2014/2020. This work was partially supported by the Association Impegno per la Vita -Onlus, Pozzuoli, Napoli, Italy and by the CNR Project NUTR-AGE (FOE-2019, DSB.AD004.271).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GP; Methodology: EC, AS, LG, EI, LC; Formal analysis and investigation: MG, EC, GP; Writing-original draft preparation: MG, GP; Writing—review and editing: MG, EC, MR, GP; Funding acquisition: MR; Resources: GP; Supervision: MR, GP. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Gianna Palmieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogliettino, M., Cocca, E., Sandomenico, A. et al. Selective inhibition of acylpeptide hydrolase in SAOS-2 osteosarcoma cells: is this enzyme a viable anticancer target?. Mol Biol Rep 48, 1505–1519 (2021). https://doi.org/10.1007/s11033-020-06129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06129-4

Keywords

Navigation