Skip to main content
Log in

Mechanism of tumour microenvironment in the progression and development of oral cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oral cancer has been a major problem all across the globe, majorly in the developing countries. With a growing emphasis in the field of cancer research, the contribution of the tumour microenvironment has been gaining a lot of importance in identifying the role of components other than the tumour cells that cause the development of cancer, thus changing the outlook. The review will shed light on the studies that describe the role of microenvironment, its components as well as summarize the studies related to their mechanism in the progression of oral cancer. The literature for the review was derived mainly from Google Scholar and PubMed, in particular concentrating on the most recent papers published in 2019 and 2020, by using the keywords “Cancer, Oral Cancer, Metastasis, OSCC, Tumour microenvironment, CAFs, ECM, Cytokines, Hypoxia, Therapeutics targeting the microenvironment”. The study provides insight into the world of micro-environmental regulation of oral cancer, the mechanism by which they interact and how to exploit it as a potential therapeutic haven for treating the disease. The components Cancer-Associated Fibroblasts (CAFs), Tumour-associated Macrophages (TAMs), Tumour-associated neutrophils (TANs), Hypoxic environment, myeloid-derived stem cells (MDSCs) and T regulatory (Tregs) cells and underlying mechanisms that control them will be the targets of study to understand the microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ai R, Tao Y, Hao Y, Jiang L, Dan H, Ji N, Zeng X, Zhou Y, Chen Q (2017) Microenvironmental regulation of the progression of oral potentially malignant disorders towards malignancy. Oncotarget 8(46):81617

    PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society (2020) Cancer facts and figures 2020. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html

  3. Amit M, Yen TC, Liao CT, Chaturvedi P, Agarwal JP, Kowalski LP, Kohler HF, Ebrahimi A, Clark JR, Cernea CR, Brandao JS, Kreppel M, Zöller JE, Leider-Trejo L, Bachar G, Shpitzer T, Bolzoni AV, Patel RP, Jonnalagadda S, Robbins TK, Shah JP, Patel SG, Gil Z (2014) The origin of regional failure in oral cavity squamous cell carcinoma with pathologically negative neck metastases. JAMA Otolaryngol Head Neck Surg 140(12):1130–1137. https://doi.org/10.1001/jamaoto.2014.1539

    Article  PubMed  Google Scholar 

  4. Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J (2016) Type I IFN s induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 138(8):1982–1993

    CAS  PubMed  Google Scholar 

  5. Anne Gowda VM, Smitha T (2019) The dendritic cell tool for oral cancer treatment. J Oral Maxillofac Pathol 23(3):326–329. https://doi.org/10.4103/jomfp.JOMFP_325_19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arneth B (2020) Tumor Microenvironment. Medicina (Kaunas) 56(1):15

    Google Scholar 

  8. Bernal MO, Chepeha D, Prawira A, Vines D, Spreafico A, Bratman S, Siu LL (2019) Abstract CT124: Sitravatinib and nivolumab in oral cavity cancer window of opportunity study (SNOW)

  9. Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A, Teijeira A, Kandalaft LE, Romero P, Coukos G, Neyns B, Sancho D, Melero I, de Vries IJM (2019) The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer 7(1):109. https://doi.org/10.1186/s40425-019-0580-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bozkus CC, Elzey BD, Crist SA, Ellies LG, Ratliff TL (2015) Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell–mediated control of T cell immunity. J Immunol 195(11):5237–5250

    PubMed Central  Google Scholar 

  11. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clinicians 68(6):394–424

    Google Scholar 

  12. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7(1):1–10

    Google Scholar 

  13. Cao M-X, Zhang W-L, Yu X-H, Wu J-S, Qiao X-W, Huang M-C, Wang K, Wu J-B, Tang Y-J, Jiang J, Research CC (2020) Interplay between cancer cells and M2 macrophages is necessary for miR-550a-3-5p down-regulation-mediated HPV-positive OSCC progression. J Exp Clin Cancer Res 39(1):1–18

    Google Scholar 

  14. Carlomagno N, Incollingo P, Tammaro V, Peluso G, Rupealta N, Chiacchio G, Sandoval Sotelo ML, Minieri G, Pisani A, Riccio E (2017) Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: a breakthrough in gastric cancer. Biomed Res Int 2017

  15. Chen S-C, Hu T-H, Huang C-C, Kung M-L, Chu T-H, Yi L-N, Huang S-T, Chan H-H, Chuang J-H, Liu L-F (2015) Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 6(18):16253

    PubMed  PubMed Central  Google Scholar 

  16. Chen X, Oppenheim J (2011) Resolving the identity myth: key markers of functional CD4+ FoxP3+ regulatory T cells. Sci Rep 11(10):1489–1496

    CAS  Google Scholar 

  17. Cheng X, Wu H, Jin Z-J, Ma D, Yuen S, Jing X-Q, Shi M-M, Shen B-Y, Peng C-H, Zhao R (2017) Up-regulation of chemokine receptor CCR4 is associated with human hepatocellular carcinoma malignant behavior. Sci Rep 7(1):1–14

    Google Scholar 

  18. Dar AA, Patil RS, Pradhan TN, Chaukar DA, D’Cruz AK, Chiplunkar SV (2020). Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunotherapy, 1–16

  19. de Sousa Lopes M, Liu Y, Liu KY, da Silveira É, Poh CF (2017) Tumor-associated immune aggregates in oral cancer: their cellular composition and potential prognostic significance. Med Hypotheses 108:17–23. https://doi.org/10.1016/j.mehy.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  20. Dolan M, Mastri M, Tracz A, Christensen JG, Chatta G, Ebos JM (2019) Enhanced efficacy of sitravatinib in metastatic models of antiangiogenic therapy resistance. PLoS One 14(8):e0220101

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Domingos-Pereira S, Galliverti G, Hanahan D, Nardelli-Haefliger D (2019) Carboplatin/paclitaxel, E7-vaccination and intravaginal CpG as tri-therapy towards efficient regression of genital HPV16 tumors. J Immunother Cancer 7(1):122

    PubMed  PubMed Central  Google Scholar 

  22. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-β:“N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita S, Sumi M, Tatsukawa E, Nagano K, Katase N (2020) Expressions of extracellular matrix-remodeling factors in lymph nodes from oral cancer patients. Oral Dis

  24. Ganesh D, Sreenivasan P, Öhman J, Wallström M, Braz-Silva PH, Giglio D, Kjeller G, Hasséus B (2018) Potentially malignant oral disorders and cancer transformation. Anticancer Res 38(6):3223–3229. https://doi.org/10.21873/anticanres.12587

    Article  PubMed  Google Scholar 

  25. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, Validire P, Damotte D, Alifano M, Magdeleinat P, Cremer I, Teillaud JL, Fridman WH, Sautès-Fridman C, Dieu-Nosjean MC (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189(7):832–844. https://doi.org/10.1164/rccm.201309-1611OC

    Article  CAS  PubMed  Google Scholar 

  26. Graizel D, Zlotogorski-Hurvitz A, Tsesis I, Rosen E, Kedem R, Vered M (2020) Oral cancer-associated fibroblasts predict poor survival: systematic review and meta-analysis. Oral Dis 26(4):733–744

    PubMed  Google Scholar 

  27. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    CAS  PubMed  Google Scholar 

  28. Gun SY, Lee SWL, Sieow JL, Wong SC (2019) Targeting immune cells for cancer therapy. Redox Biol 25:101174

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Han S, Yin X, Wang Y, Xu W, Cheng W (2020) Co-expression of HIF-1 and TLR3 is associated with poor prognosis in oral squamous cell carcinoma. Int J Clin Exp Pathol 13(1):65

    PubMed  PubMed Central  Google Scholar 

  30. Henke E, Nandigama R, Ergün S (2020) Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6:160

    PubMed  PubMed Central  Google Scholar 

  31. Horejs C-M (2016) Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur J Cell Biol 95(11):427–440

    CAS  PubMed  Google Scholar 

  32. Hsin C-H, Chou Y-E, Yang S-F, Su S-C, Chuang Y-T, Lin S-H, Lin C-W (2017) MMP-11 promoted the oral cancer migration and Fak/Src activation. Oncotarget 8(20):32783

    PubMed  PubMed Central  Google Scholar 

  33. Huang YH, Chang CY, Kuo YZ, Fang WY, Kao HY, Tsai ST, Wu LW (2019) Cancer-associated fibroblast-derived interleukin-1β activates protumor C-C motif chemokine ligand 22 signaling in head and neck cancer. Cancer Sci 110(9):2783

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hussaini H, Parachuru V, Seymour G, Rich A (2017) Forkhead box-P3+ regulatory T cells and toll-like receptor 2 co-expression in oral squamous cell carcinoma. Acta Histochem 119(3):205–210

    CAS  PubMed  Google Scholar 

  35. Jablonska E, Garley M, Surazynski A, Grubczak K, Iwaniuk A, Borys J, Moniuszko M, Ratajczak-Wrona W (2020) Neutrophil extracellular traps (NETs) formation induced by TGF-β in oral lichen planus–possible implications for the development of oral cancer. Immunobiology 225(2):151901

    CAS  PubMed  Google Scholar 

  36. Jayasingam SD, Citartan M, Thang TH, Zin AAM, Ang KC, Ch'ng ES (2019) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9

  37. Jiang C, Yuan F, Wang J, Wu L (2017) Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology 222(4):651–657

    CAS  PubMed  Google Scholar 

  38. Jiang X, Huang Z, Sun X, Zheng X, Liu J, Shen J, Jia B, Luo H, Mai Z, Chen G (2020) CCL18-NIR1 promotes oral cancer cell growth and metastasis by activating the JAK2/STAT3 signaling pathway. BMC Cancer 20(1):1–13

    CAS  Google Scholar 

  39. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):1–17

    CAS  Google Scholar 

  40. Jin RU, Mills JC (2020) Tumor organoids to study gastroesophageal cancer: a primer. J Mol Cell Biol. https://doi.org/10.1093/jmcb/mjaa035

  41. Johnson SD, De Costa A-MA, Young MRI (2014) Effect of the premalignant and tumor microenvironment on immune cell cytokine production in head and neck cancer. Cancers (Basel) 6(2):756–770

    CAS  Google Scholar 

  42. Joseph I, Elizabeth J, Rao UK, Ranganathan K (2020) Study of hypoxia-inducible factor-2α expression in the malignant transformation of Oral submucous fibrosis. J Oral Maxillofac Pathol 24(1):33

    PubMed  PubMed Central  Google Scholar 

  43. Joseph JP, Harishankar M, Pillai AA, Devi A (2018) Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 80:23–32

    CAS  PubMed  Google Scholar 

  44. Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S (2019) Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics 11(7):302

    CAS  PubMed Central  Google Scholar 

  45. Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A (2008) Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem Cytochem 56(8):753–764

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim DK, Kim EK, Jung D-W, Kim J (2019) Cytoskeletal alteration modulates cancer cell invasion through RhoA-YAP signaling in stromal fibroblasts. PLoS One 14(3):e0214553

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim JI, Choi KU, Lee IS, Choi YJ, Kim WT, Shin DH, Kim K, Lee JH, Kim JY, Sol MY (2015) Expression of hypoxic markers and their prognostic significance in soft tissue sarcoma. Oncol Lett 9(4):1699–1706

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kong A, Good J, Kirkham A, Savage J, Mant R, Llewellyn L, Parish J, Spruce R, Forster M, Schipani S (2020) Phase I trial of WEE1 inhibition with chemotherapy and radiotherapy as adjuvant treatment, and a window of opportunity trial with cisplatin in patients with head and neck cancer: the WISTERIA trial protocol. BMJ Open 10(3):e033009

    PubMed  PubMed Central  Google Scholar 

  49. Kouketsu A, Sato I, Oikawa M, Shimizu Y, Saito H, Tashiro K, Yamashita Y, Takahashi T, Kumamoto H (2019) Regulatory T cells and M2-polarized tumour-associated macrophages are associated with the oncogenesis and progression of oral squamous cell carcinoma. Int J Oral Maxillofac Surg 48(10):1279–1288

    CAS  PubMed  Google Scholar 

  50. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004

  51. Lakshminarayana S, Augustine D, Rao RS, Patil S, Awan KH, Venkatesiah SS, Haragannavar VC, Nambiar S, Prasad K (2018) Molecular pathways of oral cancer that predict prognosis and survival: a systematic review. J Carcinogenesis 17

  52. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12(3):259–267

    CAS  PubMed  Google Scholar 

  53. Lee C-H, Liu S-Y, Chou K-C, Yeh C-T, Shiah S-G, Huang R-Y, Cheng J-C, Yen C-Y, Shieh Y-S (2014) Tumor-associated macrophages promote oral cancer progression through activation of the Axl signaling pathway. Ann Surg Oncol 21(3):1031–1037

    PubMed  Google Scholar 

  54. Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, Yu JH, Gong G (2016) Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 69(5):422–430. https://doi.org/10.1136/jclinpath-2015-203089

    Article  PubMed  Google Scholar 

  55. Lee J-J, Kao K-C, Chiu Y-L, Jung C-J, Liu C-J, Cheng S-J, Chang Y-L, Ko J-Y, Chia J-S (2017) Enrichment of human CCR6+ regulatory T cells with superior suppressive activity in oral cancer. J Immunol 199(2):467–476

    CAS  PubMed  Google Scholar 

  56. Lee M-H, Chang JT-C, Liao C-T, Chen Y-S, Kuo M-L, Shen C-R (2018) Interleukin 17 and peripheral IL-17-expressing T cells are negatively correlated with the overall survival of head and neck cancer patients. Oncotarget 9(11):9825

    PubMed  PubMed Central  Google Scholar 

  57. Li B, Liu Y, Hu T, Zhang Y, Zhang C, Li T, Wang C, Dong Z, Novakovic VA, Hu T (2019) Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol 145(7):1695–1707

    CAS  PubMed  Google Scholar 

  58. Li Q, Liu X, Wang D, Wang Y, Lu H, Wen S, Fang J, Cheng B, Wang Z (2020) Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci 12(1):24. https://doi.org/10.1038/s41368-020-00092-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y-Y, Tao Y-W, Gao S, Li P, Zheng J-M, Zhang S-E, Liang J, Zhang Y (2018a) Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 36:209–220

    PubMed  PubMed Central  Google Scholar 

  60. Li Y-U, Zhou C-X, Gao Y (2018b) Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res 369(1):43–53

    CAS  PubMed  Google Scholar 

  61. Lin Y-W, Huang S-T, Wu J-C, Chu T-H, Huang S-C, Lee C-C, Tai M-H (2019) Novel HDGF/HIF-1α/VEGF axis in oral cancer impacts disease prognosis. BMC Cancer 19(1):1083

    PubMed  PubMed Central  Google Scholar 

  62. Lu Y, Li Y, Wang Z, Xie S, Wang Q, Lei X, Ruan Y, Li J (2019) Downregulation of RGMA by HIF-1A/miR-210-3p axis promotes cell proliferation in oral squamous cell carcinoma. Biomed Pharmacother 112:108608

    CAS  PubMed  Google Scholar 

  63. Luksic I, Suton P (2017) Predictive markers for delayed lymph node metastases and survival in early-stage oral squamous cell carcinoma. Head Neck 39(4):694–701

    PubMed  Google Scholar 

  64. Mason GM, Lowe K, Melchiotti R, Ellis R, de Rinaldis E, Peakman M, Heck S, Lombardi G, Tree TI (2015) Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. J Immunol 195(5):2030–2037

    CAS  PubMed  Google Scholar 

  65. Mello FW, Melo G, Pasetto JJ, Silva CAB, Warnakulasuriya S, Rivero ER (2019) The synergistic effect of tobacco and alcohol consumption on oral squamous cell carcinoma: a systematic review and meta-analysis. Clin Oral Investig:1–11

  66. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3:83

    PubMed  PubMed Central  Google Scholar 

  67. Ni YH, Ding L, Huang XF, Dong YC, Hu QG, Hou YY (2015) Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients. Tumour Biol 36(7):5291–5298. https://doi.org/10.1007/s13277-015-3189-5

    Article  CAS  PubMed  Google Scholar 

  68. Peltanova B, Raudenska M, Masarik M (2019) Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18(1):63

    PubMed  PubMed Central  Google Scholar 

  69. Petruzzi MNMR, Cherubini K, Salum FG, De Figueiredo MAZ (2017) Role of tumour-associated macrophages in oral squamous cells carcinoma progression: an update on current knowledge. Diagn Pathol 12(1):1–7

    Google Scholar 

  70. Piccard H, Muschel R, Opdenakker G (2012) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol/Hematol 82(3):296–309

    CAS  Google Scholar 

  71. PO DEL, Jorge CC, Oliveira DT, Pereira MC (2014) Hypoxic condition and prognosis in oral squamous cell carcinoma. Anticancer Res 34(2):605–612

    Google Scholar 

  72. Qian C, Dai Y, Xu X, Jiang Y, Science L (2019) HIF-1α regulates proliferation and invasion of Oral Cancer cells through Kv3. 4 channel. Ann Clin Lab Sci 49(4):457–467

    CAS  PubMed  Google Scholar 

  73. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME (2019) Role of matrix metalloproteinases in angiogenesis and Cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  74. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A (2014) Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 134(12):2853–2864

    CAS  PubMed  Google Scholar 

  75. Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders J (2011) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11(1):167

    PubMed  PubMed Central  Google Scholar 

  76. Ricci S, Pinto F, Auletta A, Giordano A, Giovane A, Settembre G, Boccellino M, Boffo S, Di Carlo A, Di Domenico M (2019) The enigmatic role of matrix metalloproteinases in epithelial-to-mesenchymal transition of oral squamous cell carcinoma: implications and nutraceutical aspects. J Cell Biochem 120(5):6813–6819

    CAS  Google Scholar 

  77. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for Cancer therapy. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040840

  78. Sathish N, Wang X, Yuan Y (2014) Human papillomavirus (HPV)-associated Oral cancers and treatment strategies. J Dent Res 93(7 Suppl):29s–36s. https://doi.org/10.1177/0022034514527969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scully C, Field J, Tanzawa H (2000) Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control. Oral Oncol 36(3):256–263

    CAS  PubMed  Google Scholar 

  80. Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P (2019) Neutrophil diversity in health and disease. Trends Immunol 40(7):565–583. https://doi.org/10.1016/j.it.2019.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sim F, Leidner R, Bell RB (2019) Immunotherapy for head and neck cancer. Oral Maxillofac Surg Clin North Am 31(1):85–100

    PubMed  Google Scholar 

  82. Sinevici N, O’sullivan J (2016) Oral cancer: deregulated molecular events and their use as biomarkers. Oraloncology 61:12–18

    CAS  Google Scholar 

  83. Song JJ, Zhao SJ, Fang J, Ma D, Liu XQ, Chen XB, Wang Y, Cheng B, Wang Z (2016) Foxp3 overexpression in tumor cells predicts poor survival in oral squamous cell carcinoma. BMC Cancer 16:530. https://doi.org/10.1186/s12885-016-2419-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spenlé C, Loustau T, Murdamoothoo D, Erne W, Beghelli-de la Forest Divonne S, Veber R, Petti L, Bourdely P, Mörgelin M, Brauchle E (2020) Tenascin-C orchestrates an immune suppressive tumor microenvironment in oral squamous cell carcinoma. Cancer Immunol Res

  85. Suárez-Sánchez FJ, Lequerica-Fernández P, Suárez-Canto J, Rodrigo JP, Rodriguez-Santamarta T, Domínguez-Iglesias F, García-Pedrero JM, de Vicente JC (2020) Macrophages in Oral carcinomas: relationship with Cancer stem cell markers and PD-L1 expression. Cancers (Basel) 12(7):1764

    Google Scholar 

  86. Taghavi N (2015) Prognostic factors of survival rate in oral squamous cell carcinoma: clinical, histologic, genetic and molecular concepts. Arch Iran Med 18(5):314–319

    PubMed  Google Scholar 

  87. Tamamura R, Nagatsuka H, Siar CH, Katase N, Naito I, Sado Y, Nagai N (2013) Comparative analysis of basal lamina type IV collagen α chains, matrix metalloproteinases-2 and-9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem 115(2):113–119

    CAS  PubMed  Google Scholar 

  88. Tazeen S, Prasad K, Harish K, Sagar P, Kapali AS, Chandramouli S (2020) Assessment of pretreatment neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in prognosis of Oral squamous cell carcinoma. J Oral Maxillofacial Surg Off J Am Assoc Oral Maxillofacial Surgeons 78(6):949–960. https://doi.org/10.1016/j.joms.2020.01.001

    Article  Google Scholar 

  89. Walker C, Mojares E, del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19(10):3028

    PubMed Central  Google Scholar 

  90. Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GJ, Savelyeva N (2018a) Targeting head and neck cancer by vaccination. Front Immunol 9:830

    PubMed  PubMed Central  Google Scholar 

  91. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, Zheng L, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DAA, Schalper K (2019a) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell, 176(1–2):334–347. https://doi.org/10.1016/j.cell.2018.11.010

  92. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017). Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

  93. Wang X, Zhang W, Sun X, Lin Y, Chen W (2018b) Cancerassociated fibroblasts induce epithelialmesenchymal transition through secreted cytokines in endometrial cancer cells. Oncol Lett 15(4):5694–5702

    PubMed  PubMed Central  Google Scholar 

  94. Wang Z, Wu VH, Allevato MM, Gilardi M, He Y, Luis Callejas-Valera J, Vitale-Cross L, Martin D, Amornphimoltham P, McDermott J, Yung BS, Goto Y, Molinolo AA, Sharabi AB, Cohen EEW, Chen Q, Lyons JG, Alexandrov LB, Gutkind JS (2019b) Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat Commun 10(1):5546. https://doi.org/10.1038/s41467-019-13471-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watari K, Shibata T, Kawahara A, Sata K, Nabeshima H, Shinoda A, Abe H, Azuma K, Murakami Y, Izumi H, Takahashi T, Kage M, Kuwano M, Ono M (2014) Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One 9(6):e99568. https://doi.org/10.1371/journal.pone.0099568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weber M, Büttner-Herold M, Hyckel P, Moebius P, Distel L, Ries J, Amann K, Neukam FW, Wehrhan F (2014) Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages–an immunohistochemical analysis. J Cranio-Maxillofac Surg 42(7):1087–1094

    Google Scholar 

  97. Xiao Y, Li H, Mao L, Yang QC, Fu LQ, Wu CC, Liu B, Sun Z (2019) CD103(+) T and dendritic cells indicate a favorable prognosis in Oral Cancer. J Dent Res 98(13):1480–1487. https://doi.org/10.1177/0022034519882618

    Article  CAS  PubMed  Google Scholar 

  98. Yamagata Y, Tomioka H, Sakamoto K, Sato K, Harada H, Ikeda T, Kayamori K (2017) CD163-positive macrophages within the tumor stroma are associated with lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma. J Oral Maxillofacial Surg Off J Am Assoc Oral Maxillofacial Surg 75(10):2144–2153

    Google Scholar 

  99. Yoshida T, Akatsuka T, Imanaka-Yoshida K, migration (2015) Tenascin-C and integrins in cancer. Cell Adhes Migr 9(1–2):96–104

    CAS  Google Scholar 

  100. Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L (2011) CXCR4 promotes oral squamous cell carcinoma migration and invasion through inducing expression of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res 9(2):161–172

    CAS  PubMed  Google Scholar 

  101. Zandberg DP, Algazi AP, Jimeno A, Good JS, Fayette J, Bouganim N, Ready NE, Clement PM, Even C, Jang RW (2019) Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with≥ 25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur J Cancer 107:142–152

    CAS  PubMed  Google Scholar 

  102. Zeng C, Kuang H, Fan W, Chen X, Yu T, Tang Q, Zhou Z, Liang F (2019) Downregulation of FOXP3 in neutrophils by IL8 promotes the progression of oral squamous cell carcinoma. Oncol Lett 18(5):4771–4777

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang H, Li Z-L, Ye S-B, Ouyang L-Y, Chen Y-S, He J, Huang H-Q, Zeng Y-X, Zhang X-S, Li J (2015) Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunoth 64(12):1587–1599

    CAS  Google Scholar 

  104. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-β to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178(4):2018–2027

    CAS  PubMed  Google Scholar 

  105. WHO (2019) Oral cancer. https://www.who.int/cancer/prevention/diagnosis-screening/oral-cancer/en/. Accessed in August, 2020

  106. WHO (2020) International classification of diseases for oncology (ICD-O) .https://apps.who.int/iris/bitstream/handle/10665/96612/9789241548496_eng.pdf?sequence=1. Accessed in August, 2020

Download references

Funding

The study was supported by the Indian Council of Medical Research (ICMR), Govt. of India in the form of fellowship to Dr. Mohd Mughees under Research Associate Fellowship (RA) scheme [45/25/2018-NAN/BMS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Wajid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All the authors agree and give consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughees, M., Sengupta, A., Khowal, S. et al. Mechanism of tumour microenvironment in the progression and development of oral cancer. Mol Biol Rep 48, 1773–1786 (2021). https://doi.org/10.1007/s11033-020-06054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06054-6

Keywords

Navigation