Skip to main content

Advertisement

Log in

Generation of HBsAg DNA aptamer using modified cell-based SELEX strategy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aptamers as potential alternatives for antibodies could be employed against hepatitis B surface antigen (HBsAg), the great hallmark and first serological marker in HBV, for further theragnostic applications. Therefore, isolation HBsAg specific aptamer was performed in this study with a modified Cell-SELEX method. HEK293T overexpressing HBsAg and HEK293T as target and control cells respectively, were incubated with single-stranded rounds of DNA library during six SELEX and Counter SELEX rounds. Here, we introduced the new modified Cell-SELEX using deoxyribonuclease I digestion to separate single stranded DNA aptamers against the HBsAg. Characterization and evaluation of selected sequences were performed using flow cytometry analysis. The results led to isolation of 15 different ssDNA clones in six rounds of selection which were categorized to four clusters based on common structural motifs. The evaluation of SELEX progress showed growth in aptamer affinity with increasing in the cycle number. Taken together, the application of modified cell-SELEX demonstrated the isolation of HBsAg-specific ssDNA aptamers with proper affinity. Modified cell-SELEX as an efficient method can shorten the selection procedure and increase the success rate while the benefits of cell-based SELEX will be retained. Selected aptamers could be applied in purification columns, diagnostic kits, and drug delivery system against HBV-related liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banerjee J, Nilsen-Hamilton M (2013) Aptamers: multifunctional molecules for biomedical research. J Mol Med 91(12):1333–1342. https://doi.org/10.1007/s00109-013-1085-2

    Article  CAS  PubMed  Google Scholar 

  2. Sun H, Zu Y (2015) A highlight of recent advances in aptamer technology and its application. Molecules 20(7):11959–11980. https://doi.org/10.3390/molecules200711959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H (2017) Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci 12(2):88–98. https://doi.org/10.4103/1735-5362.202447

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L (2016) Aptamers: a promising chemical antibody for cancer therapy. Oncotarget 7(12):13446

    Article  Google Scholar 

  5. Kanwar R, Roy K, Maremanda G, Subramanian K, Veedu N, Bawa R, Kanwar R (2015) Nucleic acid-based aptamers: applications, development and clinical trials. Current Med Chem 22(21):2539–2557

    Article  CAS  Google Scholar 

  6. Ku T-H, Zhang T, Luo H, Yen TM, Chen P-W, Han Y, Lo Y-H (2015) Nucleic acid aptamers: an emerging tool for biotechnology and biomedical sensing. Sensors 15(7):16281–16313

    Article  CAS  Google Scholar 

  7. Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Therapy Nucleic Acids 3:e182

    Article  CAS  Google Scholar 

  8. McKeague M, McConnell EM, Cruz-Toledo J, Bernard ED, Pach A, Mastronardi E, Zhang X, Beking M, Francis T, Giamberardino A (2015) Analysis of in vitro aptamer selection parameters. J Mol Evol 81(5–6):150–161

    Article  CAS  Google Scholar 

  9. Sefah K, Shangguan D, Xiong X, Odonoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5(6):1169

    Article  CAS  Google Scholar 

  10. Kouhpayeh S, Hejazi Z, Khanahmad H, Rezaei A (2017) Real-time PCR: an appropriate approach to confirm ssDNA generation from PCR product in SELEX process. Iran J Biotechnol 15(2):143–148. https://doi.org/10.15171/ijb.1550

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pan Q, Luo F, Liu M, Zhang X-L (2018) Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 77(2):83–98

    Article  Google Scholar 

  12. Hui Y, Shan L, Lin-fu Z, Jian-hua Z (2007) Selection of DNA aptamers against DC-SIGN protein. Mol Cell Biochem 306(1–2):71–77

    Article  CAS  Google Scholar 

  13. Trépo C, Chan HL, Lok A (2014) Hepatitis B virus infection. Lancet 384(9959):2053–2063

    Article  Google Scholar 

  14. Liu J, Yang Y, Hu B, Ma Z-Y, Huang H-P, Yu Y, Liu S-P, Lu M-J, Yang D-L (2010) Development of HBsAg-binding aptamers that bind HepG2. 2.15 cells via HBV surface antigen. Virol Sin 25(1):27–35

    Article  Google Scholar 

  15. Xi Z, Huang R, Li Z, He N, Wang T, Su E, Deng Y (2015) Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl Mater Interfaces 7(21):11215–11223

    Article  CAS  Google Scholar 

  16. Kaur H (2018) Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta 1862(10):2323–2329

    Article  CAS  Google Scholar 

  17. Kouhpayeh S, Einizadeh AR, Hejazi Z, Boshtam M, Shariati L, Mirian M, Darzi L, Sojoudi M, Khanahmad H, Rezaei A (2016) Antiproliferative effect of a synthetic aptamer mimicking androgen response elements in the LNCaP cell line. Cancer Gene Ther 23(8):254–257. https://doi.org/10.1038/cgt.2016.26

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi M (2018) Aptamers targeting cell surface proteins. Biochimie 145:63–72

    Article  CAS  Google Scholar 

  19. Zou X, Wu J, Gu J, Shen L, Mao L (2019) Application of aptamers in virus detection and antiviral therapy. Front Microbiol 10:1462

    Article  Google Scholar 

  20. Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862

    Article  CAS  Google Scholar 

  21. Yüce M, Ullah N, Budak H (2015) Trends in aptamer selection methods and applications. Analyst 140(16):5379–5399

    Article  Google Scholar 

  22. Mirian M, Taghizadeh R, Khanahmad H, Salehi M, Jahanian-Najafabadi A, Sadeghi-aliabadi H, Kouhpayeh S (2016) Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression. Res Pharm Sci 11(5):366

    Article  Google Scholar 

  23. Galas DJ, Schmitz A (1978) DNAase footprinting a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5(9):3157–3170

    Article  CAS  Google Scholar 

  24. Smith SE, Papavassiliou AG (1992) A coupled Southwestern–DNase I footprinting assay. Nucleic Acids Res 20(19):5239

    Article  CAS  Google Scholar 

  25. Liu Y, Wang C, Li F, Shen S, Tyrrell DLJ, Le XC, Li X-F (2012) DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. Anal Chem 84(18):7603–7606

    Article  CAS  Google Scholar 

  26. Singhal P, Gill AR, Sharma PK, Kumar R, Bhusal N, Kaur A, Sharma P (2019) Aptamers: novel therapeutic and diagnostic molecules. In: Yadav GS, Kumar V, Aggarwal NK (eds) Aptamers. Springer, Singapore, pp 73–89

    Chapter  Google Scholar 

  27. Ilgu M, Fazlioglu R, Ozturk M, Ozsurekci Y, Nilsen-Hamilton M (2019) Aptamers for diagnostics with applications for infectious diseases. In: Recent advances in analytical chemistry. IntechOpen, London

  28. Wu YX, Kwon YJ (2016) Aptamers: the “evolution” of SELEX. Methods 106:21–28

    Article  CAS  Google Scholar 

  29. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):1–16

    Article  Google Scholar 

  30. Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H (2017) Aptamers against pro-and anti-inflammatory cytokines: A review. Inflammation 40(1):340–349

    Article  CAS  Google Scholar 

  31. Fattahi A, Rahimmanesh I, Mirian M, Rohani F, Boshtam M, Gheibi A, Shariati L, Khanahmad H, Kouhpayeh S (2018) Construction and characterization of human embryonic kidney-(HEK)-293T cell overexpressing truncated α4 integrin. Res Pharm Sci 13(4):353

    Article  Google Scholar 

  32. Kim JW, Kim EY, Kim SY, Byun SK, Lee D, Oh KJ, Kim WK, Han BS, Chi SW, Lee SC, Bae KH (2014) Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX. Mol Cells 37(10):742–746. https://doi.org/10.14348/molcells.2014.0208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naderi Beni S, Kouhpayeh S, Hejazi Z, Heidari Hafshejani N, Khanahmad H (2015) Construction and characterization of recombinant HEK cell over expressing alpha4 integrin. Adv Pharm Bull 5(3):429–434. https://doi.org/10.15171/apb.2015.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shangguan D, Bing T, Zhang N (2015) Cell-SELEX: aptamer selection against whole cells. In: Aptamers selected by cell-SELEX for theranostics. Springer, pp 13–33

  35. Boshtam M, Asgary S, Rahimmanesh I, Kouhpayeh S, Naderi J, Hejazi Z, Mohammad-Dezashibi H, Pieper IL, Khanahmad H (2018) Display of human and rabbit monocyte chemoattractant protein-1 on human embryonic kidney 293T cell surface. Res Pharm Sci 13:430

    Article  Google Scholar 

  36. Kouhpayeh S, Hejazi Z, Boshtam M, Mirian M, Rahimmanesh I, Darzi L, Rezaei A, Shariati L, Khanahmad H (2019) Development of α4 integrin DNA aptamer as a potential therapeutic tool for multiple sclerosis. J Cell Biochem 120(9):16264–16272

    Article  CAS  Google Scholar 

  37. Haghighi M, Khanahmad H, Palizban A (2018) Selection and characterization of single-stranded DNA aptamers binding human B-cell surface protein CD20 by cell-SELEX. Molecules 23(4):715

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Funding

This work was financially supported by Isfahan University of Medical Sciences (Grant No. 394169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khanahmad.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

PCR optimization. Agarose electrophoresis gel images of preparative PCR showing the products of the various cycles of selected DNA library amplification for 2 nd and 6th rounds of selection. The best number of cycles without any unspecific bands for the 2 nd and 6th rounds of selection are 16, and 18 cycles respectively which are illustrated with white arrows. Lane 1: 50-bp DNA ladder. Lane 2: Negative control. Lane 3 to 8: 8, 10, 12, 14, 16 and 18 cycle of amplifications (TIF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirian, M., Kouhpayeh, S., Shariati, L. et al. Generation of HBsAg DNA aptamer using modified cell-based SELEX strategy. Mol Biol Rep 48, 139–146 (2021). https://doi.org/10.1007/s11033-020-05995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05995-2

Keywords

Navigation