Skip to main content
Log in

Prospects of next generation sequencing in lentil breeding

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lentil is an important food legume crop that has large and complex genome. During past years, considerable attention has been given on the use of next generation sequencing for enriching the genomic resources including identification of SSR and SNP markers, development of unigenes, transcripts, and identification of candidate genes for biotic and abiotic stresses, analysis of genetic diversity and identification of genes/ QTLs for agronomically important traits. However, in other crops including pulses, next generation sequencing has revolutionized the genomic research and helped in genomic assisted breeding rapidly and cost effectively. The present review discuss current status and future prospects of the use NGS based breeding in lentil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:210–220. https://doi.org/10.1007/BF02672069

    Article  Google Scholar 

  2. Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192. https://doi.org/10.1186/1471-2164-14-192

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Ali M (2006) GE interaction and its breeding implications in pulses. Botanica 56:31–36

    Google Scholar 

  4. Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:78. https://doi.org/10.3389/fpls.2015.00078

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bett K, Ramsay L, Sharpe A, Cook D, Penmetsa RV, Verma N (2014) Lentil genome sequencing: establishing a comprehensive platform for molecular breeding. In: Proceedings of international food legumes research conference (IFLRC-VI) and ICCLG-VII. Crop Development Center, SK, Saskatoon, p. 19

  6. Singh D, Singh CK, Taunk J, Tomar RS, Chaturvedi AK, Gaikwad K, Pal M (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:206. https://doi.org/10.1186/s12864-017-3596-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar J, Gupta S, Biradar RS, Gupta P, Dubey S, Singh NP (2018) Association of functional markers with flowering time in lentil. J Appl Genet 59:9–21. https://doi.org/10.1007/s13353-017-0419-0

    Article  CAS  PubMed  Google Scholar 

  8. Kumar J, Gupta S, Gupta DS, Singh NP (2018) Identification of QTLs for agronomic traits using association mapping in lentil. Euphytica 214:75. https://doi.org/10.1007/s10681-018-2155-x

    Article  CAS  Google Scholar 

  9. Kumar J, Basu PS, Gupta S, Dubey S, Gupta DS, Singh NP (2018) Physiological and molecular characterisation for high temperature stress in Lens culinaris. Func Plant Biol 45:474–487. https://doi.org/10.1071/FP17211

    Article  CAS  Google Scholar 

  10. Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K (2019) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-49496-0

    Article  CAS  Google Scholar 

  11. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83. https://doi.org/10.1038/nbt.2022

    Article  CAS  Google Scholar 

  12. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  13. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203. https://doi.org/10.1093/dnares/dsv004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deokar A, Sagi M, Daba K, Tar’an B (2018) QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol J 17:275–288. https://doi.org/10.1111/pbi.12964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameer Kumar CV (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194. https://doi.org/10.1111/pbi.12470

    Article  CAS  PubMed  Google Scholar 

  16. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941. https://doi.org/10.1111/pbi.12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2018) Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Front Plant Sci 9:83. https://doi.org/10.3389/fpls.2018.00083

    Article  PubMed  PubMed Central  Google Scholar 

  18. Unamba CI, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074

    Article  PubMed  PubMed Central  Google Scholar 

  19. Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132:797–816. https://doi.org/10.1007/s00122-018-3252-x

    Article  CAS  PubMed  Google Scholar 

  20. Afzal M, Alghamdi SS, Migdadi HH, Khan MA, Mirza SB, El-Harty E (2019) Legume genomics and transcriptomics: from classic breeding to modern technologies. Saudi J Biol Sci 27(1):543–555. https://doi.org/10.1016/j.sjbs.2019.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Nguyen K, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trend Plant Sci 24(3):263–274. https://doi.org/10.1016/j.tplants.2018.11.008

    Article  CAS  Google Scholar 

  22. Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265. https://doi.org/10.1186/1471-2164-12-265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fedoruk MJ, Vandenberg A, Bett KE (2013) Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genome. https://doi.org/10.3835/plantgenome2013.05.0012

    Article  Google Scholar 

  25. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203. https://doi.org/10.1038/nature09796

    Article  CAS  PubMed  Google Scholar 

  26. Metzker ML (2010) Sequencing technologies —the next generation. Nat Rev Genet 11:31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. BioMed Res Int. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lam HY, Clark MJ, Chen R, Chen R, Natsoulis G, O’huallachain M, Dewey FE, Habegger L, Ashley EA, Gerstein MB, Butte AJ (2012) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30:78–82. https://doi.org/10.1038/nbt.2065

    Article  CAS  Google Scholar 

  29. Thottathil GP, Jayasekaran K, Othman AS (2016) Sequencing crop genomes: a gateway to improve tropical agriculture. Trop Life Sci Res 27:93

    PubMed  PubMed Central  Google Scholar 

  30. Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L (2019) Genome sequences of horticultural plants: past, present, and future. Hortic Res 6:1–23. https://doi.org/10.1038/s41438-019-0195-6

    Article  Google Scholar 

  31. Bett K (2016) Lentil 1.0 and Beyond. PAG XXIV: plant and animal genomics conference, 8–13 January 2016, San Diego, California, USA

  32. Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R (2018) Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 19:108. https://doi.org/10.1186/s12864-018-4488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Polanco C, de Miera LE, González AI, García P, Fratini R, Vaquero F, Vences FJ, de la Vega MP (2019) Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS ONE 14:e0214409. https://doi.org/10.1371/journal.pone.0214409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. https://doi.org/10.1038/nature12211

    Article  CAS  PubMed  Google Scholar 

  36. Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nat Plants 2:1–4. https://doi.org/10.1038/nplants.2016.115

    Article  CAS  Google Scholar 

  37. Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110. https://doi.org/10.1016/j.mib.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114. https://doi.org/10.1126/science.8211116

    Article  CAS  PubMed  Google Scholar 

  39. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119. https://doi.org/10.1038/nbt.2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amini S, Pushkarev D, Christiansen L, Kostem E, Royce T, Turk C, Pignatelli N, Adey A, Kitzman JO, Vijayan K, Ronaghi M (2014) Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat Genet 46:1343. https://doi.org/10.1038/ng.3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, Mudivarti PA (2016) Haplotyping germline and cancer genomes with high-throughputlinked-read sequencing. Nat Biotechnol 34:303. https://doi.org/10.1038/nbt.3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peterson TW, Nam SJ, Darby A (2010) Next gen sequencing survey. North America equity research. JP Morgan Chase & Co, New York

    Google Scholar 

  43. Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712. https://doi.org/10.1016/j.tree.2010.09.002

    Article  PubMed  Google Scholar 

  44. Lombardi M, Materne M, Cogan NO, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S (2014) Assessment of genetic variation within a global collection of lentil (Lens culinarisMedik.) cultivars and landraces using SNP markers. BMC Genet 15:150. https://doi.org/10.1186/s12863-014-0150-3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sudheesh S, Rodda MS, Davidson J, Javid M, Stephens A, Slater AT, Cogan NO, Forster JW, Kaur S (2016) SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front Plant Sci 7:1604. https://doi.org/10.3389/fpls.2016.01604

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1093. https://doi.org/10.3389/fpls.2016.01093

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik). Plant Genome. https://doi.org/10.3835/plantgenome2017.02.0007

    Article  PubMed  Google Scholar 

  48. Khazaei H, Fedoruk M, Caron CT, Vandenberg A, Bett KE (2018) Single nucleotide polymorphism markers associated with seed quality characteristics of cultivated lentil. Plant Genome. https://doi.org/10.3835/plantgenome2017.06.0051

    Article  PubMed  Google Scholar 

  49. Kaur S, Cogan NO, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713. https://doi.org/10.1007/s00122-013-2252-0

    Article  CAS  PubMed  Google Scholar 

  50. Sudheesh S, Verma P, Forster JW, Cogan NO, Kaur S (2016) Generation and characterization of a reference transcriptome for lentil (Lens culinaris Medik.). Int J Mol Sci 17:1887. https://doi.org/10.3390/ijms17111887

    Article  CAS  PubMed Central  Google Scholar 

  51. Temel HY, Gol D, Kahriman A, Tanyolac MB (2015) Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk J Agric For 39:470–488. https://doi.org/10.3906/tar-1409-70

    Article  CAS  Google Scholar 

  52. Pavan S, Bardaro N, Fanelli V, Marcotrigiano AR, Mangini G, Taranto F, Catalano D, Montemurro C, De Giovanni C, Lotti C, Ricciardi L (2019) Genotyping by sequencing of cultivated lentil (Lens culinaris Medik.) highlights population structure in the Mediterranean gene pool associated with geographic patterns and phenotypic variables. Front Genet 10:872. https://doi.org/10.1186/s12864-018-4488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of the major family lineages during tertiary. Syst Biol 54:575–594. https://doi.org/10.1080/10635150590947131

    Article  PubMed  Google Scholar 

  54. Dissanayake R, Braich S, Cogan NO, Smith K, Kaur S (2020) Characterization of genetic and allelic diversity amongst cultivated and wild lentil accessions for germplasm enhancement. Front Genet. https://doi.org/10.3389/fgene.2020.00546

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sari E, Bhadauria V, Ramsay L, Borhan MH, Lichtenzveig J, Bett KE, Vandenberg A, Banniza S (2018) Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS ONE 13:e0204124. https://doi.org/10.1371/journal.pone.0204124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. García-García P, Vaquero F, Vences FJ, de Miera LE, Polanco C, González AI, Horres R, Krezdorn N, Rotter B, Winter P, de la Vega MP (2020) Transcriptome profiling of lentil in response to Ascochyta lentis infection. Span J Agric Res 17:0703. https://doi.org/10.5424/sjar/2019174-14982

    Article  Google Scholar 

  57. Bhadauria V, Vijayan P, Wei Y, Banniza S (2017) Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Sci Rep 7:1–3. https://doi.org/10.1038/srep42338

    Article  CAS  Google Scholar 

  58. Cao Z, Li L, Kapoor K, Banniza S (2019) Using a transcriptome sequencing approach to explore candidate resistance genes against stemphylium blight in the wild lentil species Lens ervoides. BMC Plant Biol 19:1–6. https://doi.org/10.1186/s12870-019-2013-6

    Article  CAS  Google Scholar 

  59. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS ONE. https://doi.org/10.1371/journal.pone.0032253

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp). Plant Sci 242:23–36. https://doi.org/10.1016/j.plantsci.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  61. Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221. https://doi.org/10.3389/fgene.2016.00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740. https://doi.org/10.1186/1471-2164-15-740

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407. https://doi.org/10.2135/cropsci2007.04.0191

    Article  Google Scholar 

  64. Zhong S, Dekkers JC, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364. https://doi.org/10.1534/genetics.108.098277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690. https://doi.org/10.2135/cropsci2009.11.0662

    Article  Google Scholar 

  66. Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666. https://doi.org/10.3389/fpls.2016.01666

    Article  PubMed  PubMed Central  Google Scholar 

  67. Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan S, Jain A, Garg V, Kale S (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci Rep 8:1–1

    Article  CAS  Google Scholar 

  68. Haile TA, Heidecker T, Wright D, Neupane S, Ramsay L, Vandenberg A, Bett KE (2019) Genomic selection for lentil breeding: empirical evidence. Plant Genome 13:e20002. https://doi.org/10.1002/tpg2.20002

    Article  CAS  Google Scholar 

  69. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955. https://doi.org/10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tao Y, Zhao X, Mace E, Henry R, Jordan D (2019) Exploring and exploiting pan-genomics for crop improvement. Mol Plant 12:156–169. https://doi.org/10.1016/j.molp.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  71. McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar RM (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159:1295–1308. https://doi.org/10.1104/pp.112.194605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052. https://doi.org/10.1038/nbt.2979

    Article  CAS  PubMed  Google Scholar 

  73. Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506. https://doi.org/10.1186/s13059-014-0506-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CK, Severn-Ellis A, McCombie WR, Parkin IA, Paterson AH (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms13390

    Article  CAS  Google Scholar 

  75. Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, Stritt C, Roulin AC, Schackwitz W, Tyler L, Martin J (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8:1–3. https://doi.org/10.1038/s41467-017-02292-8

    Article  CAS  Google Scholar 

  76. Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IA, Pires JC (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274. https://doi.org/10.1111/pbi.12867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Human Mol Genet 15:R57–R66. https://doi.org/10.1093/hmg/ddl057

    Article  CAS  Google Scholar 

  78. Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Yim AK, Tao Y, Wong FL, Isobe S (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340. https://doi.org/10.1038/ncomms5340

    Article  CAS  PubMed  Google Scholar 

  79. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948. https://doi.org/10.1038/ng.3346

    Article  CAS  PubMed  Google Scholar 

  80. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209. https://doi.org/10.1126/science.1228746

    Article  CAS  PubMed  Google Scholar 

  81. Hu H, Yuan Y, Bayer PE, Fernandez CT, Scheben A, Golicz AA, Edwards D (2020) Legume pangenome construction using an iterative mapping and assembly approach. In: Legume genomics. Humana, New York, pp 35–47

  82. Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK (2020) Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trend Plant Sci 25:148–158. https://doi.org/10.1016/j.tplants.2019.10.012

    Article  CAS  Google Scholar 

  83. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135. https://doi.org/10.1105/tpc.113.119982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49. https://doi.org/10.1038/s41586-018-0063-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. The Plant J 90:1007–1013. https://doi.org/10.1111/tpj.13515

    Article  CAS  PubMed  Google Scholar 

  86. Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D, Zhang X (2019) Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol J 17:881–892. https://doi.org/10.1111/pbi.13022

    Article  CAS  PubMed  Google Scholar 

  87. Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute GJ, Owens GL, Grassa CJ, Ebert DP (2019) Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants 5:54–62. https://doi.org/10.1038/s41477-018-0329-0

    Article  CAS  PubMed  Google Scholar 

  88. Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 5:1044–1051. https://doi.org/10.1038/s41588-019-0410-2

    Article  CAS  Google Scholar 

  89. Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000734

    Article  PubMed  PubMed Central  Google Scholar 

  90. Saxena RK, Von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena K, Kimurto P, Varshney RK (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568. https://doi.org/10.1371/journal.pone.0088568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jha TB, Mahanti A, Ghorai A (2015) Karyotype analysis of Indian lentils through EMA based Giemsa staining. Caryologia 68:280–288. https://doi.org/10.1080/00087114.2015.1109921

    Article  Google Scholar 

  92. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. https://doi.org/10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  93. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414. https://doi.org/10.1038/nbt.3096

    Article  CAS  PubMed  Google Scholar 

  94. Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, Kumar V (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088. https://doi.org/10.1038/ng.3872

    Article  CAS  PubMed  Google Scholar 

  95. Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284. https://doi.org/10.1038/s41588-018-0041-z

    Article  CAS  PubMed  Google Scholar 

  96. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314. https://doi.org/10.1126/science.1107891

    Article  CAS  PubMed  Google Scholar 

  97. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91. https://doi.org/10.1104/pp.102.019422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11:894–905. https://doi.org/10.1111/pbi.12082

    Article  CAS  PubMed  Google Scholar 

  99. Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinusangustifolius L. BMC Genomics 13:318. https://doi.org/10.1186/1471-2164-13-318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ogutcen E, Ramsay L, von Wettberg EB, Bett KE (2018) Capturing variation in Lens (Fabaceae): development and utility of an exome capture array for lentil. Appl Plant Sci 6:e01165. https://doi.org/10.1002/aps3.1165

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755. https://doi.org/10.1038/nrg3031

    Article  CAS  PubMed  Google Scholar 

  102. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527. https://doi.org/10.1038/ng.2007.42

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Sen Gupta, D. Prospects of next generation sequencing in lentil breeding. Mol Biol Rep 47, 9043–9053 (2020). https://doi.org/10.1007/s11033-020-05891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05891-9

Keywords

Navigation