Skip to main content
Log in

Screening of optimal reference genes for qRT-PCR and preliminary exploration of cold resistance mechanisms in Prunus mume and Prunus sibirica varieties

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Prunus sibirica and Prunus mume are closely related plant species that differ in cold tolerance. Hybrids of P. sibirica and true mume, belonging to the apricot mei group, inherited strong cold resistance from P. sibirica. These materials are favourable for research on the molecular mechanisms of cold resistance. However, no suitable reference genes have been identified for analysing gene expression patterns between P. sibirica and P. mume. Ten candidate reference genes were assessed, namely, actins (ACT2-1, ACT2-2, ACT2-3, ACT2-4), protein phosphatase 2A-1 (PP2A-1), ubiquitins (UBQ2, UBQ3), ubiquitin extension protein (UBQ1) and tubulins (TUB1, TUB2), with four distinct algorithms (geNorm, NormFinder, BestKeeper and RefFinder). UBQ2 was recognized as the best reference gene in stems and buds across materials (P. sibirica; ‘Xiaohong Zhusha’, ‘Beijing Yudie’, and ‘Xiao Lve’ for true mume; and ‘Dan Fenghou’, ‘Fenghou’, and ‘Yanxing’ for apricot mei) under cold stress. In addition, the temporal and spatial expression patterns of PmCBF6 and PmLEA10 among seven varieties during winter periods were analysed using UBQ2 as a reference gene. The expression differed significantly among cultivars, which may contribute to their differences in cold tolerance. This paper confirmed the strong cold tolerance of apricot mei. And the best internal reference gene suitable for seven varieties was selected: UBQ2. Based on the above results, the expression of PmCBF6 and PmLEA10 genes during wintering in seven varieties was analysed. The molecular mechanisms of cold resistance were found to be possibly different in different varieties of P. sibirica and P. mume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Jiang LB (2011) A brief introduction to “transferring Prunus mume from south to north”—performance and prospect. Chin Landsc Arch 1:46–49

    Google Scholar 

  2. Chen JY, Chen RD (2007) On the classification system of Prunus mume cultivars. Acta Hortic. https://doi.org/10.16420/j.issn.0513-353x.2007.04.046

    Article  Google Scholar 

  3. Chen JY (1998) “Dual classification”: a new classification system for chinese flower cultivars. J Beijing For Univ 20(2):1–5

    Google Scholar 

  4. Song Y, Zhao Y, Wang C (2011) Changes of accumulated temperature, growing season and precipitation in the North China Plain from 1961 to 2009. Acta Meteorol Sin 25(4):534. https://doi.org/10.1007/s13351-011-0412-1

    Article  Google Scholar 

  5. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18(7):1096–1108. https://doi.org/10.1175/JCLI-3318.1

    Article  Google Scholar 

  6. Hou JH, Gao ZH, Zhang Z, Chen SM, Ando T, Zhang JY, Wang XW (2011) Isolation and characterization of an agamous homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29:473–480

    Article  CAS  Google Scholar 

  7. Jiang ZP, Liang ZH, Zhu J, Guo LC (2005) Differences in the tube-shoot propagation ratio of Prunus mume in different genotypes. J Beihua Univ 6(6):550–552

    CAS  Google Scholar 

  8. Song BY (1988) Water relation of Prunus sibirica shrub. Acta Scientiarum Naturalium Universitatis Intramongolicae

  9. Dong YS (1991) Study of Prunus sibirica L. germplasm resources. Bei Fang Guo Shu

  10. Lim CC, Arora R, Townsend EC (1998) Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. Am Soc Hortic Sci 123(2):246–252

    Article  Google Scholar 

  11. Azzarello E, Mugnai S, Pandolfi C, Masi E, Marone E (2009) Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees-Struct Funct 23(1):159–167

    Article  Google Scholar 

  12. Zhang QX (1985) Comparative analysis of cold resistance of Prunus mume. J Beijing For Col 2:47–56

    CAS  Google Scholar 

  13. Zhang QX (1988) Prunus mume hybridization and cold tolerance breeding—study on frost resistance of hybrids and their parents. J Beijing For Coll 10(4):53–59

    Google Scholar 

  14. Guo C, Zhang JQ, Peng T, Bao MZ, Zhang JW (2014) Structural and expression analyses of three PmCBFs from Prunus mume. Biol Plant 58(2):247–255

    Article  CAS  Google Scholar 

  15. Ning C, Zhang Q, Hao R, Xu Z, Tao W, Yang W (2014) Molecular cloning and expression analysis of cold-resistant transcription factor PmICE1 from Prunus mume. J Northeast For Univ 42(4):21–25

    Google Scholar 

  16. Peng T, Guo C, Yang J, Xu M, Zuo J, Bao MZ, Zhang JW (2016) Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tiss Org. https://doi.org/10.1007/s11240-016-1004-7

    Article  Google Scholar 

  17. Zhang J, Yang WR, Cheng TR, Pan HT, Zhang QX (2013) Functional and evolutionary analysis of two CBF genes in Prunus mume. Can J Plant Sci 93(3):455–464. https://doi.org/10.4141/Cjps2012-193

    Article  CAS  Google Scholar 

  18. Zhao K, Zhou YZ, Ahmad S, Yong X, Xie XH, Han Y, Li YS, Sun LD, Zhang QX (2018) PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume. Sci Rep. https://doi.org/10.1038/s41598-018-22537-w

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao K, Zhou YZ, Li YS, Zhuo XK, Ahmad S, Han Y, Yong X, Zhang QX (2018) Crosstalk of PmCBFs and PmDAMs based on the changes of phytohormones under seasonal cold stress in the stem of Prunus mume. Int J Mol Sci 19(2):15

    Article  Google Scholar 

  20. Liu FX, Tan ZB, Zhu JQ (2004) Arabidopsis CBF1 in plant tolerance to low temperature and drought stresses. Hereditas 26(3):394. https://doi.org/10.1007/BF0287308621

    Article  CAS  PubMed  Google Scholar 

  21. Yan-Min LU, Chang-Qing SU, Hai-Peng L (2009) Role of the transcription factor CBF in plant cold resistance. Heilongjiang Agric Sci 37(5):7–9. https://doi.org/10.1016/j.elecom.2008.10.019

    Article  CAS  Google Scholar 

  22. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388(1):151–157. https://doi.org/10.1042/BJ20041931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao F, Du DL, An Y, Yang WR, Wang J, Cheng TR, Zhang QX (2017) Overexpression of Prunus mume dehydrin genes in Tobacco enhances tolerance to cold and drought. Front Plant Sci 8:151. https://doi.org/10.3389/Fpls.2017.00151

    Article  PubMed  PubMed Central  Google Scholar 

  24. Du DL, Zhang QX, Cheng TR, Pan HT, Yang WR, Sun LD (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40(2):1937–1946. https://doi.org/10.1007/s11033-012-2250-3

    Article  CAS  PubMed  Google Scholar 

  25. Luo M, Gao Z, Li H, Li Q, Zhang C, Xu W (2018) Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Sci Rep 8(1):4444

    Article  Google Scholar 

  26. Wang X, Feng J, Huang A, He L, Niu J, Wang G (2017) Identification of potential internal control genes for real-time PCR analysis during stress response in Pyropia haitanensis. Chin J Oceanol Limn 35(6):1432–1441

    Article  CAS  Google Scholar 

  27. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17. https://doi.org/10.1104/pp.105.063743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349. https://doi.org/10.1007/s00425-008-0706-4

    Article  CAS  PubMed  Google Scholar 

  29. Almas DE, Kamrodi AR (2018) Validation of appropriate reference genes for real-time quantitative PCR gene expression analysis in rice plants exposed to metal stresses. Russ J Plant Physiol 65(6):890–897

    Article  CAS  Google Scholar 

  30. Fan CJ, Ma JM, Guo QR, Li XT, Wang H, Lu MZ (2013) Selection of reference genes for quantitative real-time PCR in Bamboo (Phyllostachys edulis). PLoS ONE. https://doi.org/10.1371/journal.pone.0056573

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meng X, Bo Z, Xiaohua S, Shougong Z, Minren H (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408(2):337–339

    Article  Google Scholar 

  32. Wang T, Hao RJ, Pan HT, Cheng TR, Zhang QX (2014) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions. J Am Soc for Hortic Sci 139(2):113–122

    Article  CAS  Google Scholar 

  33. Zheng TC, Chen ZL, Ju YQ, Zhang H, Cai M, Pan HT, Zhang QX (2018) Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa. PLoS ONE 13(3):e0195004

    Article  Google Scholar 

  34. Gu CS, Chen SM, Liu ZL, Shan H, Luo HL, Guan ZY, Chen FD (2011) Reference gene selection for quantitative real-time PCR in Chrysanthemum subjected to biotic and abiotic stress. Mol Biotechnol 49(2):192–197. https://doi.org/10.1007/s12033-011-9394-6

    Article  CAS  PubMed  Google Scholar 

  35. Qi S, Yang LW, Wen XH, Hong Y, Song XB, Zhang MM, Dai SL (2016) Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Front Plant Sci. https://doi.org/10.3389/Fpls.2016.00287

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jan H, Jo V (2014) Selection of reliable reference genes for RT-qPCR analysis. Methods Mol Biol 1160(1160):19–26. https://doi.org/10.1007/978-1-4939-0733-5_3

    Article  CAS  Google Scholar 

  37. Luciana G, Domenico B, Cristina M (2013) Selection of reference genes from two leafhopper species challenged by phytoplasma infection, for gene expression studies by RT-qPCR. Bmc Res Notes 6(1):1–10. https://doi.org/10.1186/1756-0500-6-409

    Article  CAS  Google Scholar 

  38. He R, Xiaoqing W, Yuping L, Hongzi Z, Xueying X, Xinjian Z, Hetong Y (2017) Selection of reliable reference genes for gene expression studies in Botrytis cinerea. J Microbiol Methods 142:71–75

    Article  Google Scholar 

  39. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  Google Scholar 

  40. Wojciech R (2007) OLIGO 7 primer analysis software. Methods Mol Biol 402:35–60. https://doi.org/10.1007/978-1-59745-528-2_2

    Article  Google Scholar 

  41. Yang X (2012) Analysis of the copy number of exogenous genes in transgenic cotton using real-time quantitative PCR and the 2−△△CT method. Afr J Biotechnol 11(23):6226–6233. https://doi.org/10.5897/AJB11.4117

    Article  CAS  Google Scholar 

  42. Purwanto YA, Okvitasari H, Mardjan S, Ahmad U, Makino Y, Oshita S, Kuroki S, Kawagoe Y (2013) Chilling injury in green mature “Gedong Gincu mango” fruits based in the changes in ion leakage. Acta Hortic 1011:219–226

    Article  Google Scholar 

  43. Zhang MS, Zhang LX, Shu jing WU, Jin qiang LI, Yang YH (2006) Effects of three types stress pretreatment on chilling resistance of Jatropha curcas seedlings. J Nanjing For Univ 30(5):60–62

    Google Scholar 

  44. Marja-Liisa S, Palta JP, Reich PB (1992) Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol 3:3. https://doi.org/10.1093/treephys/11.3.241

    Article  Google Scholar 

  45. Fan GH, Fang J (2008) Effects of chitosan and salicylic acid on cold resistance of strawberry under low temperature. J Gansu Agric Univ. https://doi.org/10.1145/1344411.1344416

    Article  Google Scholar 

  46. Wang Q, Xiao-Nan YU (2013) Physiological response to low temperature stress and evaluation of cold resistance of three color-leafed trees. J Beijing For Univ 35(5):104–109

    Google Scholar 

  47. Peng-Jie C, Ya-Mei S, Bin D, Sai-Nan B, Ning-Hang W, Ling-Juan X, Li-Jie F, Qin Y, Xing-Li W, Chao Z (2018) Selection of reference gene in Magnolia denudata under salt stress using qRT-PCR. J Agric Biotechnol 26(9):1611–1620

    Google Scholar 

  48. Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178(4):359–365

    Article  CAS  Google Scholar 

  49. Kuprian E, Briceño VF, Wagner J, Neuner G (2014) Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ Exp Bot 106:4–12. https://doi.org/10.1016/j.envexpbot.2014.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  50. Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD (2015) Extreme low temperature tolerance in woody plants. Front Plant Sci 6:884. https://doi.org/10.3389/fpls.2015.00884

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the program for Science and Technology of Beijing (No. Z181100002418006) and Special Fund for Beijing Common Construction Project.

Funding

The program for Science and Technology of Beijing (No. Z181100002418006) and Special Fund for Beijing Common Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

QZ supported resources. AD and FB conceived and designed research. AD conducted experiments, analyzed data and wrote the original draft. FB reviewed and edited the manuscript. TZ, WY, JW and TC supported resources. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Qixiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, A., Bao, F., Zhang, T. et al. Screening of optimal reference genes for qRT-PCR and preliminary exploration of cold resistance mechanisms in Prunus mume and Prunus sibirica varieties. Mol Biol Rep 47, 6635–6647 (2020). https://doi.org/10.1007/s11033-020-05714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05714-x

Keywords

Navigation