Skip to main content
Log in

Reference Gene Selection for Quantitative Real-Time PCR in Chrysanthemum Subjected to Biotic and Abiotic Stress

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Quantitative real-time PCR (RT-qPCR) is a reliable method for assessing gene expression, provided that suitable reference genes are included to normalize the data. The stability of expression of eight potential reference genes, namely, tubulin (alpha-2,4 tubulin), actin, EF1α (elongation factor 1α), UBC (ubiquitin C), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), psaA (photosynthesis-related plastid gene representing photosystem I), PP2Acs (catalytic subunit of protein phosphatase 2A), and PGK (phosphoglycerate kinase), was assessed in chrysanthemum plants subjected to aphid infestation, heat stress or waterlogging stress using geNorm software. The widely used reference gene EF1α performed well for aphid infested plants but poorly for waterlogged ones. The catalytic subunit of protein phosphatase 2A (PP2Acs) was the best performing one during heat and waterlogging stress, but was the worst during aphid infestation. The commonly used reference gene actin was generally the least stable of the set. No single gene was suitable for normalization on its own. The choice of reference gene(s) is an important factor in gene expression studies based on RT-qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orsel, M., Krapp, A., & Daniel-Vedele, F. (2002). Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology, 129, 886–896.

    Article  CAS  Google Scholar 

  2. Bustin, S. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.

    Article  CAS  Google Scholar 

  3. Bustin, S. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  CAS  Google Scholar 

  4. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology, 3(7).

  5. Czechowski, T., Bari, R., Stitt, M., Scheible, W., & Udvardi, M. (2004). Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. The Plant Journal, 38, 366–379.

    Article  CAS  Google Scholar 

  6. Jain, M., Nijhawan, A., Tyagi, A., & Khurana, J. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345, 646–651.

    Article  CAS  Google Scholar 

  7. Brunner, A., Yakovlev, I., & Strauss, S. (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4, 14.

    Article  Google Scholar 

  8. Paolacci, A., Tanzarella, O., Porceddu, E., & Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 11.

    Article  Google Scholar 

  9. Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., & Han, T. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9, 59.

    Article  Google Scholar 

  10. Deng, Y., Chen, S., Lu, A., Chen, F., Tang, F., Guan, Z., et al. (2010). Production and characterisation of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniellasanbourni). Planta, 231, 693–703.

    Article  CAS  Google Scholar 

  11. Yin, D., Chen, S., Chen, F., Guan, Z., & Fang, W. (2009). Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany, 67, 87–93.

    Article  CAS  Google Scholar 

  12. Miao, H., Jiang, B., Chen, S., Zhang, S., Chen, F., Fang, W., et al. (2010). Isolation of a gibberellin 20-oxidase cDNA from and characterization of its expression in chrysanthemum. Plant Breeding, 129, 707–714.

    Article  CAS  Google Scholar 

  13. Chen, S., Miao, H., Chen, F., Jiang, B., Lu, J., & Fang, W. (2009). Analysis of expressed sequence tags (ESTs) collected from the inflorescence of Chrysanthemum. Plant Molecular Biology Reporter, 27, 503–510.

    Article  CAS  Google Scholar 

  14. Ramakers, C., Ruijter, J., Deprez, R., & Moorman, A. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339, 62–66.

    Article  CAS  Google Scholar 

  15. Livak, K., & Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  16. Nicot, N., Hausman, J., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56, 2907–2914.

    Article  CAS  Google Scholar 

  17. Løvdal, T., & Lillo, C. (2009). Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry, 387, 238–242.

    Article  Google Scholar 

  18. Lin, Y., & Lai, Z. (2010). Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 178, 359–365.

    Article  CAS  Google Scholar 

  19. Fernandez, P., Di Rienzo, J. A., Moschen, S., Dosio, G. A. A., Aguirrezábal, L. A. N., Hopp, H. E., Paniego, N., & Heinz, R. A. (2010). Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant cell reports, 1–12 (2010). doi:10.1007/s00299-010-0944-3.

  20. Xu, M., Zhang, B., Su, X., Zhang, S., & Huang, M. (2011). Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Analytical Biochemistry, 408, 337–339.

    Article  CAS  Google Scholar 

  21. Bezier, A., Lambert, B., & Baillieul, F. (2002). Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108, 111–120.

    Article  CAS  Google Scholar 

  22. Langer, K., Ache, P., Geiger, D., Stinzing, A., Arend, M., Wind, C., et al. (2002). Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. The Plant Journal, 32, 997–1009.

    Article  CAS  Google Scholar 

  23. Reid, K., Olsson, N., Schlosser, J., Peng, F., & Lund, S. (2006). An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 6, 27.

    Article  Google Scholar 

  24. Thomas, C., Meyer, D., Wolff, M., Himber, C., Alioua, M., & Steinmetz, A. (2003). Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Molecular Biology, 52, 1025–1036.

    Article  CAS  Google Scholar 

  25. Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71.

    Article  Google Scholar 

  26. Pérez, R., Tupac-Yupanqui, I., & Dunner, S. (2008). Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Molecular Biology, 9, 79.

    Article  Google Scholar 

  27. Stürzenbaum, S., & Kille, P. (2001). Control genes in quantitative molecular biological techniques: the variability of invariance. Comparative Biochemistry and Physiology Part B, 130, 281–289.

    Article  Google Scholar 

  28. Suzuki, T., Higgins, P., & Crawford, D. (2000). Control selection for RNA quantitation. Biotechniques, 29, 332–337.

    CAS  Google Scholar 

  29. McNulty, S., & Toscano, W. (1995). Transcriptional regulation of glyceraldehyde-3-phosphate dehydrogenase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochemical and Biophysical Research Communications, 212, 165–171.

    Article  CAS  Google Scholar 

  30. Anderson, L., & Carol, A. (2005). Enzyme co-localization in the pea leaf cytosol: 3-P-glycerate kinase, glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase. Plant Science, 169, 620–628.

    Article  CAS  Google Scholar 

  31. Andersen, C., Jensen, J., & Orntoft, T. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  32. Martin, R. C., Hollenbeck, V. G., & Dombrowski, J. E. (2008). Evaluation of reference genes for quantitative RT-PCR in Lolium perenne. Crop Science, 48, 1881–1887.

    Article  CAS  Google Scholar 

  33. Silveira, D., Alves-Ferreira, M., Guimar es, L. A., da Silva, F. R., & Carneiro, V. T. C. (2009). Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biology, 9, 84.

    Article  Google Scholar 

  34. Huis, R., Hawkins, S., & Neutelings, G. (2010). Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biology, 10, 71.

    Article  Google Scholar 

  35. Wan, H., Zhao, Z., Qian, C., Sui, Y., Malik, A. A., & Chen, J. (2010). Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry, 399, 257–261.

    Article  CAS  Google Scholar 

  36. Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., et al. (1999). Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75, 291–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant No. 30872064, 31071820, 31071825), the Program for Hi-Tech Research, Jiangsu, China, Grant (No. BE2008307, BE2009317, BE2010303), and the Fundamental Research Funds for the Central Universities (KYJ 200907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, C., Chen, S., Liu, Z. et al. Reference Gene Selection for Quantitative Real-Time PCR in Chrysanthemum Subjected to Biotic and Abiotic Stress. Mol Biotechnol 49, 192–197 (2011). https://doi.org/10.1007/s12033-011-9394-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9394-6

Keywords

Navigation