Skip to main content
Log in

Metallo-ß-lactamases: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microbial pathogens including Enterobacteriaceae family members bear different antibiotic resistance genes comprising Extended-Spectrum-ß-Lactamases (ESBLs) and Metallo-ß-Lactamases (MBLs) on their chromosomes and mobile genetic elements such as plasmids and transposons. Because of the clinical concern regarding MBLs in global public healthcare system, this review focuses on different characteristics of MBLs. For preparing this review article, different databases, websites and search engines such as MEDLINE, SCOPUS, SCIENCEDIRECT and GOOGLE SCHOLAR were searched via MeSH keywords of Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, MBL and Bioinformatics. Different types of papers comprising review articles and original articles which were published between the years of 1980 and 2020 were searched, studied and selected by the authors. The results show that, the importance of the spread of MBLs among microbial pathogens may lead to progressive studies for definite treatment. The use of computational biology and chemistry and bioinformatics has had effective consequences on recognition and identification of different properties of MBLs. The application of bioinformatic software tools and databases gives us a great promise regarding production of effective inhibitors against MBLs to have a definite treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walsh C, Wencewicz T (2016) Antibiotics: challenges, mechanisms, opportunities. American Society for Microbiology (ASM), Washington

    Google Scholar 

  2. Lee W, McDonough MA, Kotra LP, Li Z-H, Silvaggi NR, Takeda Y et al (2001) A 1.2-Å snapshot of the final step of bacterial cell wall biosynthesis. Proc Natl Acad Sci. 98(4):1427–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Palzkill T (2013) Metallo-β-lactamase structure and function. Ann N Y Acad Sci 1277(1):91–104

    CAS  PubMed  Google Scholar 

  4. Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM et al (2019) The reaction mechanism of metallo-β-lactamases is tuned by the conformation of an active-site mobile loop. Antimicrob Agents Chemother 63(1):e01754–18

    PubMed  Google Scholar 

  5. Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105(2):395–424

    CAS  PubMed  Google Scholar 

  6. Mojica FM, Bonomo AR, Fast W (2016) B1-metallo-β-lactamases: where do we stand? Curr Drug Targets. 17(9):1029–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Issakhanian L, Behzadi P (2019) Antimicrobial agents and urinary tract infections. Curr Pharm Des 25(12):1409–1423

    CAS  PubMed  Google Scholar 

  8. Öztürk H, Ozkirimli E, Özgür A (2015) Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS ONE 10(2):e0117874

    PubMed  PubMed Central  Google Scholar 

  9. Wong D, van Duin D (2017) Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs. 77(6):615–628

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L et al (2017) Beta-lactamase database (BLDB)–structure and function. J Enzyme Inhib Med Chem 32(1):917–919

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonomo RA (2017) β-Lactamases: a focus on current challenges. Cold Spring Harbor Perspect Med. 7(1):a025239

    Google Scholar 

  12. Gupta V (2007) An update on newer beta-lactamases. Indian J Med Res 126(5):417

    CAS  PubMed  Google Scholar 

  13. Hozzari A, Behzadi P, Khiabani PK, Sholeh M, Sabokroo N (2020) Clinical cases, drug resistance, and virulence genes profiling in uropathogenic Escherichia coli. J Appl Genet. https://doi.org/10.1007/s13353-020-00542-y

    Article  PubMed  Google Scholar 

  14. Crowder MW, Spencer J, Vila AJ (2006) Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 39(10):721–728

    CAS  PubMed  Google Scholar 

  15. Bebrone C (2007) Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74(12):1686–1701

    CAS  PubMed  Google Scholar 

  16. Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW (2018) The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharm Sci. 39(7):635–647

    CAS  PubMed  Google Scholar 

  17. Meini M-R, Llarrull LI, Vila AJ (2015) Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett 589(22):3419–3432

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oelschlaeger P, Mayo SL (2005) Hydroxyl groups in the ββ sandwich of metallo-β-lactamases favor enzyme activity: a computational protein design study. J Mol Biol 350(3):395–401

    CAS  PubMed  Google Scholar 

  19. Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Behzadi P (2018) Introductory chapter: an overview on urinary tract infections, pathogens, and risk factors. Microbiology of urinary tract infections. Microbial agents and predisposing factorsMicrobial agents and predisposing factors. IntechOpen, London

    Google Scholar 

  21. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22(1):161–182

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39(6):1211

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ambler RP (1980) The structure of β-lactamases. Phil Trans R Soc Lond B. 289(1036):321–331

    CAS  Google Scholar 

  26. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54(3):969–976

    CAS  PubMed  Google Scholar 

  27. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z (2014) Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol. 17(1):11–22

    PubMed  Google Scholar 

  28. Bush K, Bradford PA (2019) Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol 17(5):295

    CAS  PubMed  Google Scholar 

  29. Silveira MC, da Silva AR, da Mota FF, Catanho M, Jardim R, Guimarães RAC et al (2018) Systematic identification and classification of β-lactamases based on sequence similarity criteria: β-lactamase annotation. Evol Bioinform. 14:1176934318797351

    Google Scholar 

  30. Behzadi P, Ranjbar R (2019) DNA microarray technology and bioinformatic web services. Acta microbiol immunol hung 66(1):19–30

    CAS  PubMed  Google Scholar 

  31. Ranjbar R, Behzadi P, Najafi A, Roudi R (2017) DNA microarray for rapid detection and identification of food and water borne Bacteria: from dry to wet lab. Open Microbiol J. 11:330

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Queenan AM, Bush K (2007) Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20(3):440–458

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J-F, Chou K-C (2013) Metallo-β-lactamases: structural features, antibiotic recognition, inhibition, and inhibitor design. Curr Top Med Chem 13(10):1242–1253

    CAS  PubMed  Google Scholar 

  34. Bush K (2013) The ABCD’s of β-lactamase nomenclature. J Infect Chemother. 19(4):549–559

    CAS  PubMed  Google Scholar 

  35. Oelschlaeger P, Schmid RD, Pleiss J (2003) Modeling domino effects in enzymes: molecular basis of the substrate specificity of the bacterial metallo-β-lactamases IMP-1 and IMP-6. Biochemistry 42(30):8945–8956

    CAS  PubMed  Google Scholar 

  36. Aravind L (1999) An evolutionary classification of the metallo-ß-lactamase fold proteins. Silico Biol. 1(2):69–91

    CAS  Google Scholar 

  37. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frère J-M et al (1995) The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14(20):4914–4921

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34(21):3755–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VH, Takebayashi Y et al (2019) β-lactamases and β-lactamase inhibitors in the 21st Century. J Mol Biol. 431:3472–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Herzberg O, Fitzgerald PM. Metallo β‐Lactamases. Encyclopedia of Inorganic and Bioinorganic Chemistry. 2011

  41. Somboro AM, Sekyere JO, Amoako DG, Essack SY, Bester LA (2018) Diversity and proliferation of metallo-β-lactamases: a clarion call for clinically effective metallo-β-lactamase inhibitors. Appl Environ Microbiol 84(18):e00698–18

    PubMed  PubMed Central  Google Scholar 

  42. Hawk MJ, Breece RM, Hajdin CE, Bender KM, Hu Z, Costello AL et al (2009) Differential binding of Co (II) and Zn (II) to metallo-β-lactamase Bla2 from Bacillus anthracis. J Am Chem Soc 131(30):10753–10762

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère J-M (2001) Standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother 45(3):660–663

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18(2):306–325

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Carruthers TJ, Carr PD, Loh CT, Jackson CJ, Otting G (2014) Iron (III) located in the dinuclear metallo-β-lactamase IMP-1 by pseudocontact shifts. Angew Chem Int Ed 53(51):14269–14272

    CAS  Google Scholar 

  46. Mammeri H, Bellais S, Nordmann P (2002) Chromosome-encoded β-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob Agents Chemother 46(11):3561–3567

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K et al (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12):5046–5054

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z (2019) NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00115-18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Orellano EG, Girardini JE, Cricco JA, Ceccarelli EA, Vila AJ (1998) Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry 37(28):10173–10180

    CAS  PubMed  Google Scholar 

  50. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure. 4(7):823–836

    CAS  PubMed  Google Scholar 

  51. Carfi A, Paul-Soto R, Martin L, Petillot Y, Frère J-M, Dideberg O (1997) Purification, crystallization and preliminary X-ray analysis of Bacteroides fragilis Zn2 + β-lactamase. Acta Crystallogr D Biol Crystallogr 53(4):485–487

    CAS  PubMed  Google Scholar 

  52. Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW (2012) Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1. Biochemistry 51(18):3839–3847

    CAS  PubMed  Google Scholar 

  53. Lisa M-N, Palacios AR, Aitha M, González MM, Moreno DM, Crowder MW et al (2017) A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun. 8(1):538

    PubMed  PubMed Central  Google Scholar 

  54. Wachino J. Crystal structure of IMP-1 metallo-beta-lactamase in a complex with MCR. To be published

  55. Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M et al (2004) Update of the standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother 48(7):2347–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomas CA, Cheng Z, Yang K, Hellwarth E, Yurkiewicz CJ, Baxter FM et al (2020) Probing the mechanisms of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1. J Inorganic Biochem. https://doi.org/10.1016/j.jinorgbio.2020.111123

    Article  Google Scholar 

  57. Campos-Bermudez VA, González JM, Tierney DL, Vila AJ (2010) Spectroscopic signature of a ubiquitous metal binding site in the metallo-β-lactamase superfamily. J Biol Inorg Chem 15(8):1209–1218

    CAS  PubMed  Google Scholar 

  58. Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ, Chothia C et al (2007) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36(suppl_1):D419–D425

    PubMed  PubMed Central  Google Scholar 

  59. Chandonia J-M, Fox NK, Brenner SE (2018) SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Res 47(D1):D475–D481

    PubMed Central  Google Scholar 

  60. Gomes CM, Frazão C, Xavier AV, Legall J, Teixeira M (2002) Functional control of the binuclear metal site in the metallo-β-lactamase-like fold by subtle amino acid replacements. Protein Sci 11(3):707–712

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan NH, Bui AA, Xiao Y, Sutton RB, Shaw RW, Wylie BJ et al (2019) A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. PLoS ONE 14(4):e0214440

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Furuyama T, Nonomura H, Ishii Y, Hanson ND, Shimizu-Ibuka A (2016) Structural and mutagenic analysis of metallo-β-lactamase IMP-18. Antimicrob Agents Chemother 60(9):5521–5526

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Moali C, Anne C, Lamotte-Brasseur J, Groslambert S, Devreese B, Van Beeumen J et al (2003) Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem Biol 10(4):319–329

    CAS  PubMed  Google Scholar 

  64. King DT, Worrall LJ, Gruninger R, Strynadka NC (2012) New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J Am Chem Soc 134(28):11362–11365

    CAS  PubMed  Google Scholar 

  65. Zhang H, Hao Q (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 25(8):2574–2582

    CAS  PubMed  Google Scholar 

  66. Kupper MB, Herzog K, Bennink S, Schlömer P, Bogaerts P, Glupczynski Y et al (2015) The three-dimensional structure of VIM-31–a metallo-β-lactamase from Enterobacter cloacae in its native and oxidized form. FEBS J. 282(12):2352–2360

    CAS  PubMed  Google Scholar 

  67. Green VL, Verma A, Owens RJ, Phillips SE, Carr SB (2011) Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr Sect F Struct Biol Cryst Commun 67(10):1160–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo Y, Wang J, Niu G, Shui W, Sun Y, Zhou H et al (2011) A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell. 2(5):384–394

    CAS  PubMed  PubMed Central  Google Scholar 

  69. King D, Strynadka N (2011) Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 20(9):1484–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamaguchi Y, Matsueda S, Matsunaga K, Takashio N, Toma-Fukai S, Yamagata Y et al (2015) Crystal structure of IMP-2 metallo-β-lactamase from Acinetobacter spp. Biol Pharm Bull. 38(1):96–101

    CAS  PubMed  Google Scholar 

  71. Wu S, Xu D, Guo H (2010) QM/MM studies of monozinc β-lactamase CphA suggest that the crystal structure of an enzyme—intermediate complex represents a minor pathway. J Am Chem Soc 132(51):17986–17988

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bebrone C, Delbrück H, Kupper MB, Schlömer P, Willmann C, Frère J-M et al (2009) The structure of the dizinc subclass B2 metallo-β-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 53(10):4464–4471

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ, Carloni P (2009) Common mechanistic features among metallo-β-lactamases A COMPUTATIONAL STUDY OF AEROMONAS HYDROPHILA CphA ENZYME. J Biol Chem 284(41):28164–28171

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Z, Fast W, Benkovic SJ (1999) On the mechanism of the metallo-β-lactamase from Bacteroides fragilis. Biochemistry 38(31):10013–10023

    CAS  PubMed  Google Scholar 

  75. Park H, Brothers EN, Merz KM (2005) Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-β-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 127(12):4232–4241

    CAS  PubMed  Google Scholar 

  76. Makena A, Brem J, Pfeffer I, Geffen RE, Wilkins SE, Tarhonskaya H et al (2014) Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J Antimicrob Chemother 70(2):463–469

    PubMed  PubMed Central  Google Scholar 

  77. Iyobe S, Kusadokoro H, Ozaki J, Matsumura N, Minami S, Haruta S et al (2000) Amino acid substitutions in a variant of IMP-1 metallo-β-lactamase. Antimicrob Agents Chemother 44(8):2023–2027

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Behzadi P, Issakhanian L (2019) Introductory chapter: gene regulation, an RNA network-dependent architecture. Gene regulation. IntechOpen, London

    Google Scholar 

  79. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett 503(1):1–6

    CAS  PubMed  Google Scholar 

  80. Toney J (2003) Metallo-beta-lactamase inhibitors: could they give old antibacterials new life? Curr Opin Investig Drugs (London England:2000). 4(2):115

    Google Scholar 

  81. Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG et al (2017) Clinical variants of New Delhi metallo-β-lactamase are evolving to overcome zinc scarcity. ACS infectious diseases. 3(12):927–940

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bahr G, Vitor-Horen L, Bethel CR, Bonomo RA, González LJ, Vila AJ (2018) Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn (II) deprivation. Antimicrob Agents Chemother 62(1):e01849–17

    PubMed  Google Scholar 

  83. Pitout J (2012) Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 3:9

    PubMed  PubMed Central  Google Scholar 

  84. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Edelstein MV, Skleenova EN, Shevchenko OV, D’souza JW, Tapalski DV, Azizov IS et al (2013) Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis. 13(10):867–876

    PubMed  Google Scholar 

  86. Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J et al (2018) Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00074-18

    Article  PubMed  PubMed Central  Google Scholar 

  87. Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T et al (2019) Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing gram-negative bacteria. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00010-19

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chauzy A, Torres SGB, Buyck J, de Jonge B, Adier C, Marchand S et al (2019) Semimechanistic pharmacodynamic modeling of aztreonam-avibactam combination to understand its antimicrobial activity against multidrug-resistant gram-negative bacteria. CPT Pharmacometrics Syst Pharmacol. 8(11):815–824

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Abboud MI, Damblon C, Brem J, Smargiasso N, Mercuri P, Gilbert B et al (2016) Interaction of avibactam with class B metallo-β-lactamases. Antimicrob Agents Chemother 60(10):5655–5662

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Somboro AM, Amoako DG, Sekyere JO, Kumalo HM, Khan R, Bester LA et al (2019) 1, 4, 7-triazacyclononane restores the activity of β-lactam antibiotics against metallo-β-lactamase-producing Enterobacteriaceae: exploration of potential metallo-β-lactamase inhibitors. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02077-18

    Article  PubMed  PubMed Central  Google Scholar 

  91. Barnes MD, Kumar V, Bethel CR, Moussa SH, O’Donnell J, Rutter JD et al (2019) Targeting multidrug-resistant Acinetobacter spp: sulbactam and the diazabicyclooctenone β-lactamase inhibitor ETX2514 as a novel therapeutic agent. MBio. https://doi.org/10.1128/mBio.00159-19

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tehrani KH, Martin NI (2018) β-lactam/β-lactamase inhibitor combinations: an update. MedChemComm. 9(9):1439–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Revers L, Furczon E (2010) An introduction to biologics and biosimilars. Part II: subsequent entry biologics: biosame or biodifferent? Can Pharmacists J/Revue des Pharmaciens du Canada. 143(4):184–191

    Google Scholar 

  94. Klingler F-M, Wichelhaus TA, Frank D, Cuesta-Bernal J, El-Delik J, Müller HF et al (2015) Approved drugs containing thiols as inhibitors of metallo-β-lactamases: strategy to combat multidrug-resistant bacteria. J Med Chem 58(8):3626–3630

    CAS  PubMed  Google Scholar 

  95. Büttner D, Kramer JS, Klingler F-M, Wittmann SK, Hartmann MR, Kurz CG et al (2017) Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases. ACS infectious diseases. 4(3):360–372

    PubMed  Google Scholar 

  96. Park B, Naisbitt D, Gordon S, Kitteringham N, Pirmohamed M (2001) Metabolic activation in drug allergies. Toxicology 158(1–2):11–23

    CAS  PubMed  Google Scholar 

  97. Bergstrom A, Katko A, Adkins Z, Hill J, Cheng Z, Burnett M et al (2017) Probing the interaction of aspergillomarasmine A with metallo-β-lactamases NDM-1, VIM-2, and IMP-7. ACS Infect Dis. 4(2):135–145

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

PB, HAGP, TMK and LI had the idea for the article, PB, HAGP, TMK and LI performed the literature search, PB, HAGP and TMK performed data analysis, PB, HAGP, TMK and LI drafted the manuscript, and PB critically revised the work.

Corresponding author

Correspondence to Payam Behzadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadi, P., García-Perdomo, H.A., Karpiński, T.M. et al. Metallo-ß-lactamases: a review. Mol Biol Rep 47, 6281–6294 (2020). https://doi.org/10.1007/s11033-020-05651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05651-9

Keywords

Navigation