Skip to main content

Advertisement

Log in

Role of Oct4–Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells are commonly tolerant toward chemotherapy and radiotherapy. Oct4 and Sox2 transcription factors are shown to be overexpressed in various cancers. At the current research, inhibition of Oct4 and Sox2 transcription factors was performed through application of decoy oligodeoxynucleotides (ODNs) strategy via repressing stemness properties in HT29-ShE cells encompassing enriched cancer stem-like cells. Designed Oct4–Sox2 complex decoy ODNs were transfected into HT29-ShE cells with Lipofectamine reagent. At the next step, ODNs efficiency transfection and subcellular localization were determined via flow cytometry and fluorescence microscopy, respectively. Further investigations such as cell proliferation and apoptosis analysis, colonosphere formation, invasion and migration, and real-time PCR assays were also carried out. Obtained results shed light on the fact that the designed complex decoys were effectively transfected into HT29-ShE cells, and they were found to be localized in subcellular compartments. Oct4–Sox2 decoy ODNs led to decreased cell viability, arresting the cell cycle in G0/G1 phases, increasing apoptosis, inhibition of migration/invasion and colonosphere formation ability of HT29-ShE cells in comparison with control and scramble groups. Furthermore, Oct4–Sox2 complex decoy could modulate the MET process via alteration of mRNA expression of downstream genes. It could be concluded that application of Oct4–Sox2 transcription factor decoy strategy in cells with stemness potential could lead to inhibiting the cell growth and triggering differentiation. Therefore, this technique could be applied along with usual remedies (chemotherapy and radiotherapy) as high potential method for treating cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSCs:

Cancer stem cells

cd‐ODNs:

Complex decoy oligodeoxynucleotides

EMSA:

Electrophoretic mobility shift assay

CRCs:

Colorectal cancer

MFI:

Mean fluorescence intensity

EMT:

Epithelial–mesenchymal transition

mESCs:

Mouse embryonic stem cells

HMG:

High‐mobility group

Oct4:

Octamer‐binding transcription Factor 4

Sox2:

Sex determining region Y‐box 2

TFD:

Transcription factor decoy

MET:

Mesenchymal–epithelial transition

References

  1. Wen K, Fu Z, Wu X, Feng J, Chen W, Qian J (2013) Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer Lett 333(1):56–65

    CAS  PubMed  Google Scholar 

  2. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T (2018) Cancer stem cells in colorectal cancer: a review. J Clin Pathol 71(2):110–116

    CAS  PubMed  Google Scholar 

  3. Makena MR, Ranjan A, Thirumala V, Reddy A (2018) Cancer stem cells: road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta https://doi.org/10.1016/j.bbadis.2018.11.015

    Article  Google Scholar 

  4. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pan GJ, Chang ZY, Schöler HR, Duanqing P (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12(5):321

    PubMed  Google Scholar 

  6. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7(9):1150

    PubMed  PubMed Central  Google Scholar 

  7. Chen H, Jin K, Song J, Zuo Q, Yang H, Zhang Y, Li B (2019) Functional characterization of the Sox2, c-Myc, and Oct4 promoters. J Cell Biochem 120(1):332–342

    CAS  PubMed  Google Scholar 

  8. Klein RH, Knoepfler PS (2019) The molecular circuitry underlying pluripotency in embryonic and induced pluripotent stem cells. In: Atala A, Lanza R, Mikos AG, Nerem R (eds) Principles of regenerative medicine. Elsevier, Amsterdam, pp 49–63

    Google Scholar 

  9. Rizzino A, Wuebben EL (2016) Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta 1859(6):780–791

    CAS  PubMed  Google Scholar 

  10. Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G (2019) Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol 7:16

    PubMed  PubMed Central  Google Scholar 

  11. Codd AS, Kanaseki T, Torigo T, Tabi Z (2018) Cancer stem cells as targets for immunotherapy. Immunology 153(3):304–314

    CAS  PubMed  Google Scholar 

  12. Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203

    PubMed  PubMed Central  Google Scholar 

  13. Johari B, EbrahimiRad M, Maghsood F, Lotfinia M, Saltanatpouri Z, Teimoori-Toolabi L, Sharifzadeh Z, Karimipoor M, Kadivar M (2017) Myc decoy oligodeoxynucleotide inhibits growth and modulates differentiation of mouse embryonic stem cells as a model of cancer stem cells. Anti-Cancer Agents Med Chem 17(13):1786–1795

    CAS  Google Scholar 

  14. Miyake T, Miyake T, Sakaguchi M, Nankai H, Nakazawa T, Morishita R (2018) Prevention of asthma exacerbation in a mouse model by simultaneous inhibition of NF-κB and STAT6 activation using a chimeric decoy strategy. Mol Ther Nucleic Acids 10:159–169

    CAS  PubMed  Google Scholar 

  15. Rad SMAH, Langroudi L, Kouhkan F, Yazdani L, Koupaee AN, Asgharpour S, Shojaei Z, Bamdad T, Arefian E (2015) Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumor Biol 36(7):4871–4881

    CAS  Google Scholar 

  16. Morishita R, Higaki J, Tomita N, Ogihara T (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82(10):1023–1028

    CAS  PubMed  Google Scholar 

  17. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci 92(13):5855–5859

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahn JD, Kim C-H, Magae J, Kim YH, Kim HJ, Park K-K, Hong S, Park K-G, Lee IK, Chang Y-C (2003) E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun 310(4):1048–1053

    CAS  PubMed  Google Scholar 

  19. Liu WM, Scott KA, Shahin S, Propper DJ (2004) The in vitro effects of CRE-decoy oligonucleotides in combination with conventional chemotherapy in colorectal cancer cell lines. Eur J Biochem 271(13):2773–2781

    CAS  PubMed  Google Scholar 

  20. Cho W, Kim H, Koo J, Lee I (2006) Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. In: Kahan BD (ed) Transplantation proceedings. Elsevier, Amsterdam, pp 2161–2163

    Google Scholar 

  21. Park JH, Jo JH, Kim KH, Kim SJ, Lee WR, Park KK, Park JB (2009) Antifibrotic effect through the regulation of transcription factor using ring type-Sp1 decoy oligodeoxynucleotide in carbon tetrachloride-induced liver fibrosis. J Gene Med 11(9):824–833

    CAS  PubMed  Google Scholar 

  22. Hölschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S, Güler F, Tillmanns H, Hecker M (2006) STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res 71(3):527–536

    PubMed  Google Scholar 

  23. Li M-J, Kim J, Li S, Zaia J, Yee J-K, Anderson J, Akkina R, Rossi JJ (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 12(5):900–909

    CAS  PubMed  Google Scholar 

  24. Zhang J, Yamada O, Sakamoto T, Yoshida H, Araki H, Murata T, Shimotohno K (2005) Inhibition of hepatitis C virus replication by pol III-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology 342(2):276–285

    CAS  PubMed  Google Scholar 

  25. Ma Y, Zhang X, Xu X, Shen L, Yao Y, Yang Z, Liu P (2015) STAT3 decoy oligodeoxynucleotides-loaded solid lipid nanoparticles induce cell death and inhibit invasion in ovarian cancer cells. PLoS ONE 10(4):e0124924

    PubMed  PubMed Central  Google Scholar 

  26. Wardwell PR, Bader RA (2015) Immunomodulation of cystic fibrosis epithelial cells via NF-κB decoy oligonucleotide-coated polysaccharide nanoparticles. J Biomed Mater Res A 103(5):1622–1631

    PubMed  Google Scholar 

  27. Wang X, Liu Q, Hou B, Zhang W, Yan M, Jia H, Li H, Yan D, Zheng F, Ding W (2013) Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells. PLoS ONE 8(9):e73942

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Johari B, Zargan J (2017) Simultaneous targeted inhibition of Sox2-Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biol Int 41(12):1335–1344

    CAS  PubMed  Google Scholar 

  29. Bigdelou Z, Johari B, Kadivar M, Rismani E, Asadi Z, Rahmati M, Saltanatpour Z (2019) Investigation of specific binding of designed oligodeoxynucleotide decoys to transcription factors in HT29 cell line undergoing epithelial–mesenchymal transition (EMT). J Cell Physiol 234(12):22765–22774

    CAS  PubMed  Google Scholar 

  30. Saltanatpour Z, Kadivar M, Johari B, Lotfinia M, Maghsood F, Zeinali S, Nasehi L, Fallah A, Fanni A, Nikbin B (2016) Transduction of an optimized recombinant lentivirus expressing E-cadherin shRNA resulted in stable downregulation of CDH1 gene and obvious cell morphological change in the human colorectal cancer cell line HT29. Intern J Med Res Health Sci 5(11):87–93

    Google Scholar 

  31. Saltanatpour Z, Johari B, Alizadeh A, Lotfinia M, Majidzadeh-A K, Nikbin B, Kadivar M (2019) Enrichment of cancer stem-like cells by the induction of epithelial-mesenchymal transition using lentiviral vector carrying E-cadherin shRNA in HT29 cell line. J Cell Physiol 234(12):22935–22946

    CAS  PubMed  Google Scholar 

  32. Liu S, Dontu G, Mantle ID, Patel S, Ahn N-s, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Phi LTH, Wijaya YT, Sari IN, Yang YG, Lee YK, Kwon HY (2018) The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SOX2-dependent manner. Cancer Med 7(11):5621–5631

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Talebi A, Kianersi K, Beiraghdar M (2015) Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining. Adv Biomed Res 4:234

    PubMed  PubMed Central  Google Scholar 

  35. Lahiri DK, Ge Y-W (2000) Electrophoretic mobility shift assay for the detection of specific DNA–protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue. Brain Res Protoc 5(3):257–265

    CAS  Google Scholar 

  36. Zhang X, Zhang J, Wang L, Wei H, Tian Z (2007) Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 7(1):149

    CAS  PubMed  PubMed Central  Google Scholar 

  37. ElAndaloussi S, Johansson H, Magnusdottir A, Järver P, Lundberg P, Langel Ü (2005) TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. J Control Release 110(1):189–201

    CAS  PubMed  Google Scholar 

  38. Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L (2011) Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med 9(1):97

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Qiu Z, Jin Q, Chen G, Guo M (2018) Cell cycle arrest and apoptosis in HT-29 cells induced by dichloromethane fraction from Toddalia asiatica Lam. Front Pharmacol 9:629

    PubMed  PubMed Central  Google Scholar 

  40. Mirzaei MR, Mahmoodi M, Hassanshahi G, Ahmadi Z (2017) Down-regulation of anti-apoptotic genes in tumor cell lines is facilitated by suppression of OCT4B1. Adv Med Sci 62(1):97–102

    PubMed  Google Scholar 

  41. Feng R, Zhou S, Liu Y, Song D, Luan Z, Dai X, Li Y, Tang N, Wen J, Li L (2013) Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem J 450(3):459–468

    CAS  PubMed  Google Scholar 

  42. Zhang Z, Zhu Y, Lai Y, Wu X, Feng Z, Yu Y, Bast RC, Wan X, Xi X, Feng Y (2013) Follicle-stimulating hormone inhibits apoptosis in ovarian cancer cells by regulating the OCT4 stem cell signaling pathway. Int J Oncol 43(4):1194–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Egashira K, Ji S, Ito H, Aoki M, Isobe M, Morishita R (2008) Long-term follow up of initial clinical cases with NF-κB decoy oligodeoxynucleotide transfection at the site of coronary stenting. J Gene Med 10(7):805–809

    CAS  PubMed  Google Scholar 

  44. Sen M, Grandis JR (2012) Nucleic acid-based approaches to STAT inhibition. Jak-Stat 1(4):285–291

    PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Liu P, Zhang B, Mao H, Shen L, Ma Y (2013) Inhibitory effects of STAT3 decoy oligodeoxynucleotides on human epithelial ovarian cancer cell growth in vivo. Int J Mol Med 32(3):623–628

    CAS  PubMed  Google Scholar 

  46. Yamaguchi H, Ishida Y, Hosomichi J, Suzuki J-i, Usumi-Fujita R, Shimizu Y, Kaneko S, Ono T (2017) A new approach to transfect NF-κB decoy oligodeoxynucleotides into the periodontal tissue using the ultrasound-microbubble method. Int J Oral Sci 9(2):80

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cutroneo KR (2007) TGF-β–induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen 15:S54–S60

    PubMed  Google Scholar 

  48. Zhang L, Wen X, Li M, Li S, Zhao H (2018) Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. BioFactors 44(1):61–68

    CAS  PubMed  Google Scholar 

  49. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE 5(8):e12445. https://doi.org/10.1371/journal.pone.0012445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiou S-H, Wang M-L, Chou Y-T, Chen C-J, Hong C-F, Hsieh W-J, Chang H-T, Chen Y-S, Lin T-W, Hsu H-S (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell–like properties and epithelial–mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444

    CAS  PubMed  Google Scholar 

  52. Rahmati M, Johari B, Kadivar M, Rismani E, Mortazavi Y (2020) Suppressing the metastatic properties of the breast cancer cells using STAT3 decoy oligodeoxynucleotides: a promising approach for eradication of cancer cells by differentiation therapy. J Cell Physiol. https://doi.org/10.1002/jcp.29431

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study received support by Deputy for Research and Technology, Zanjan University of Medical Sciences, Zanjan, Iran (Grant Number A-12–1244-2, Ethical Code ZUMS.REC.1397.48).

Author information

Authors and Affiliations

Authors

Contributions

Conception of Idea and study design: ZB, and BJ. Collecting data, and paper writing: ZB, BJ, MK, ZS, and ZA. Final approval: YM and BJ.

Corresponding author

Correspondence to Behrooz Johari.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdelou, Z., Mortazavi, Y., Saltanatpour, Z. et al. Role of Oct4–Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Mol Biol Rep 47, 1859–1869 (2020). https://doi.org/10.1007/s11033-020-05280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05280-2

Keywords

Navigation