Skip to main content
Log in

High-glucose medium induces cellular differentiation and changes in metabolic functionality of oligodendroglia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oligodendrocyte precursor cells (OPC) are a uniformly distributed population of glial cells that are well known for proliferating and differentiating into mature oligodendrocytes to form the myelin sheet in the central nervous system (CNS). Since monocarboxylate transporter 1 (MCT1) has shown to be expressed by oligodendroglia, the involvement of these cells with the metabolic support to axons has emerged as an important role in the maintenance of neuronal functionality. Hyperglycemia is a metabolic dysfunction highly associated with oxidative stress, a classical feature linked to many disorders such as diabetes mellitus. Despite of being widely investigated in several different cell cultures, including astrocytes and neurons, such condition has been poorly investigated in OPC culture. Thus, the aim of this study was to explore the possible effects of high-glucose exposure in acute and chronic conditions on oligodendroglial development and functionality in vitro. In this sense, we have demonstrated that under high-glucose exposure OPC improved its differentiation rate without affecting its membrane integrity and its morphology. Besides, chronic high-glucose condition also increased glucose uptake and lactate release. On the other hand, our findings also showed that, unlike what happens in other glial cells and neurons, high-glucose exposure did not seem to induce oxidative stress in OPC culture. Therefore, as far as we have investigated in this present study, we suggest that OPC may be able to support neurons and other glial cells during hyperglycemia events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DCFH-DA:

2′-7′-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

GSH:

Glutathione

HBSS:

Hank’s balanced salt solution

HPLCH:

High performance liquid chromatography

MCT1:

Monocarboxylate transporter 1

NG2:

Neuron–glial antigen 2

OPC:

Oligodendrocyte precursor cells

PI:

Propidium iodide

ROS:

Reactive oxygen species

References

  1. Aggarwal S, Yurlova L, Simons M (2011) Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 21:585–593

    Article  CAS  PubMed  Google Scholar 

  2. Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14:731–741. https://doi.org/10.2174/1567205014666170117104053

    Article  CAS  PubMed  Google Scholar 

  3. Bankston AN, Mandler MD, Feng Y (2013) Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull 29:216–228. https://doi.org/10.1007/s12264-013-1321-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barateiro A, Fernandes A (2014) Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843:1917–1929

    Article  CAS  PubMed  Google Scholar 

  5. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Article  CAS  PubMed  Google Scholar 

  6. Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145:11–19

    Article  CAS  PubMed  Google Scholar 

  7. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931. https://doi.org/10.1155/2016/5698931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  CAS  PubMed  Google Scholar 

  9. Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87:1381–1390

    Article  CAS  PubMed  Google Scholar 

  10. Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK (2016) Oligodendrocyte regeneration: its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 110:633–643

    Article  CAS  PubMed  Google Scholar 

  11. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    Article  CAS  PubMed  Google Scholar 

  12. Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J (2004) Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 27:453–465

    Article  CAS  PubMed  Google Scholar 

  13. Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM (2018) Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 66:5–14. https://doi.org/10.1002/glia.23206

    Article  PubMed  Google Scholar 

  14. Ettle B, Schlachetzki JC, Winkler J (2016) Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders? Mol Neurobiol 53:3046–3062. https://doi.org/10.1007/s12035-015-9205-3

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Castaneda A, Gaultier A (2016) Adult oligodendrocyte progenitor cells—multifaceted regulators of the CNS in health and disease. Brain Behav Immun 57:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu J, Tay SS, Ling EA, Dheen ST (2006) High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49:1027–1038. https://doi.org/10.1007/s00125-006-0153-3

    Article  CAS  PubMed  Google Scholar 

  17. Funfschilling U et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. https://doi.org/10.1038/nature11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ichihara Y, Doi T, Ryu Y, Nagao M, Sawada Y, Ogata T (2017) Oligodendrocyte progenitor cells directly utilize lactate for promoting cell cycling and differentiation. J Cell Physiol 232:986–995. https://doi.org/10.1002/jcp.25690

    Article  CAS  PubMed  Google Scholar 

  19. Kumar P, Raman T, Swain MM, Mishra R, Pal A (2017) Hyperglycemia-induced oxidative-nitrosative stress induces inflammation and neurodegeneration via augmented tuberous sclerosis complex-2 (TSC-2) activation in neuronal cells. Mol Neurobiol 54:238–254. https://doi.org/10.1007/s12035-015-9667-3

    Article  CAS  PubMed  Google Scholar 

  20. Lee Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448. https://doi.org/10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopez Juarez A, He D, Richard LuQ (2016) Oligodendrocyte progenitor programming and reprogramming: toward myelin regeneration. Brain Res 1638:209–220

    Article  CAS  PubMed  Google Scholar 

  22. Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23:644–651

    Article  CAS  PubMed  Google Scholar 

  23. Naruse M, Ishizaki Y, Ikenaka K, Tanaka A, Hitoshi S (2016) Origin of oligodendrocytes in mammalian forebrains: a revised perspective. J Physiol Sci. https://doi.org/10.1007/s12576-016-0479-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nonneman A, Robberecht W, Van Den Bosch L (2014) The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener Dis Manag 4:223–239. https://doi.org/10.2217/nmt.14.21

    Article  PubMed  Google Scholar 

  25. Pellegrini D, Onor M, Degano I, Bramanti E (2014) Development and validation of a novel derivatization method for the determination of lactate in urine and saliva by liquid chromatography with UV and fluorescence detection. Talanta 130:280–287

    Article  CAS  PubMed  Google Scholar 

  26. Pellerin L (2003) Lactate as a pivotal element in neuron–glia metabolic cooperation. Neurochem Int 43:331–338

    Article  CAS  PubMed  Google Scholar 

  27. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x

    Article  CAS  PubMed  Google Scholar 

  28. Podbielska M, Banik NL, Kurowska E, Hogan EL (2013) Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 3:1282–1324. https://doi.org/10.3390/brainsci3031282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Richa R, Yadawa AK, Chaturvedi CM (2017) Hyperglycemia and high nitric oxide level induced oxidative stress in the brain and molecular alteration in the neurons and glial cells of laboratory mouse, Mus musculus. Neurochem Int 104:64–79

    Article  CAS  PubMed  Google Scholar 

  31. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548. https://doi.org/10.1523/jneurosci.3516-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosa PM, Martins LAM, Souza DO, Quincozes-Santos A (2017) Glioprotective effect of resveratrol: an emerging therapeutic role for oligodendroglial cells. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0510-x

    Article  PubMed  Google Scholar 

  33. Rosafio K, Castillo X, Hirt L, Pellerin L (2016) Cell-specific modulation of monocarboxylate transporter expression contributes to the metabolic reprograming taking place following cerebral ischemia. Neuroscience 317:108–120

    Article  CAS  PubMed  Google Scholar 

  34. Rosko L, Smith VN, Yamazaki R, Huang JK (2018) Oligodendrocyte bioenergetics in health and disease. Neuroscientist. https://doi.org/10.1177/1073858418793077

    Article  PubMed  PubMed Central  Google Scholar 

  35. Royland JE, Konat GW, Wiggins RC (1993) Myelin gene activation: a glucose sensitive critical period in development. J Neurosci Res 36:399–404. https://doi.org/10.1002/jnr.490360406

    Article  CAS  PubMed  Google Scholar 

  36. Selvarajah D, Tesfaye S (2006) Central nervous system involvement in diabetes mellitus. Curr Diab Rep 6:431–438

    Article  CAS  PubMed  Google Scholar 

  37. Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR (2017) Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflamm 14:21. https://doi.org/10.1186/s12974-016-0774-5

    Article  CAS  Google Scholar 

  38. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791.

    Article  CAS  PubMed  Google Scholar 

  39. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS ONE 8:e60282. https://doi.org/10.1371/journal.pone.0060282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tramontina AC et al (2012) High-glucose and S100B stimulate glutamate uptake in C6 glioma cells. Neurochem Res 37:1399–1408. https://doi.org/10.1007/s11064-012-0722-4

    Article  CAS  PubMed  Google Scholar 

  41. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  42. Verdile G et al (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat Inflamm 2015:105828. https://doi.org/10.1155/2015/105828

    Article  CAS  Google Scholar 

  43. Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23:4967–4974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoon SY, Oh YJ (2015) Glucose levels in culture medium determine cell death mode in MPP(+)-treated dopaminergic neuronal cells. Exp Neurobiol 24:197–205. https://doi.org/10.5607/en.2015.24.3.197

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang Z, Yan J, Shi H (2013) Hyperglycemia as a risk factor of ischemic stroke. J Drug Metab Toxicol. https://doi.org/10.4172/2157-7609.1000153

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Financiadora de Estudos e Projetos (FINEP)-Instituto Brasileiro de Neurociências (IBN Net) 01.06.0842-00, Universidade Federal do Rio Grande do Sul (UFRGS), and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteçãao (INCTEN/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Machado da Rosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rosa, P.M., Meira, L.A.M., Souza, D.O. et al. High-glucose medium induces cellular differentiation and changes in metabolic functionality of oligodendroglia. Mol Biol Rep 46, 4817–4826 (2019). https://doi.org/10.1007/s11033-019-04930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04930-4

Keywords

Navigation