Skip to main content

Advertisement

Log in

Anti-angiogenic activity of Gracilaria coronopifolia J.G. Agardh extract by lowering the levels of trace metals (iron, zinc and copper) in duck chorioallantoic membrane and in vitro activation of AMP-kinase

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) is an intracellular energy sensor important in metabolic regulation, cell growth, and survival. However, the specific role of AMPK signaling pathway in the inhibition of angiogenesis remains unclear. The study highlights the activity on AMP activated protein kinase signaling pathways of a marine algae, Gracilaria coronopifolia, and its effects on angiogenesis. It was found that the most potent extract, GCD, inhibited angiogenesis significantly in the duck chorioallantoic membrane assay and also activated the enzyme AMP-kinase, in vitro. The dichloromethane extract was found most active in inhibiting angiogenesis in the duck chorioallantoic membrane (IC50 = 1.21 μg/mL) followed by GCH (IC50 = 3.08 μg/mL) (p = 0.479) and GCM (IC50 = 8.93 μg/mL) (p = 0.042). Benferroni post hoc analysis revealed that there was no significant difference between the percent inhibitions of GCH and GCM extracts (p = 0.479). Consequently, angiogenic inhibition caused lowering of iron, zinc, and copper levels in the duck CAM. Thin layer chromatography and gas chromatography–mass spectrometry revealed the components of each extracts. Notably, this is the first report on the kinase activity of a red algae G. coronopifolia extracts and a colorimetric-based quantification of angiogenesis based on metal content of CAM. Our data also suggest a novel therapeutic approach for inhibiting angiogenesis through the AMPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pan S, Deng X et al (2018) Black tea affects obesity by reducing nutrient intake and activating AMP-activated protein kinase in mice. Mol Biol Rep 45:689–697. https://doi.org/10.1007/s11033-018-4205-9

    Article  CAS  PubMed  Google Scholar 

  2. Soraya H, Esfahanian N et al (2012) Anti-angiogenic effects of metformin, an AMPK activator, on human umbilical vein endothelial cells and on granulation tissue in rat. Iran J Basic Med Sci 15(6):1202–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Han F, Li CF et al (2018) The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 9(1):4728. https://doi.org/10.1038/s41467-018-017188-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peyton KJ, Liu X et al (2012) Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther 342(3):827–834. https://doi.org/10.1124/jpet.112.194712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245. https://doi.org/10.1038/emm.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Showkat M, Beigh MA et al (2014) mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol Biol Int 14:686984. https://doi.org/10.1155/2014/686984

    Article  CAS  Google Scholar 

  7. Goodman M, Liu Z et al (2014) AMPK activators as a drug for diabetes, cancer and cardiovascular disease. Pharm Reg Affairs 3(2):118. https://doi.org/10.4172/2167-7689.1000118.AMPK

    Article  Google Scholar 

  8. Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117(26):6999–7006. https://doi.org/10.1182/blood-2011-01-330142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saghiri MA, Asatourian A et al (2015) Functional role of inorganic trace elements in angiogenesis—part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol 96(1):129–142. https://doi.org/10.1016/j.critrevonc.2015.05.010

    Article  PubMed  Google Scholar 

  10. Saghiri MA, Asatourian A et al (2015) Functional role of inorganic trace elements in angiogenesis—part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol 96(1):143–155. https://doi.org/10.1016/j.critrevonc.2015.05.011

    Article  PubMed  Google Scholar 

  11. Merrill, JF, Thomson DM et al (2012) Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle. Nutr Metab (Lond). 9(1): 104. http://www.nutritionandmetabolism.com/content/9/1/104

  12. Gybina AA, Prohaska JR (2008) Fructose-2,6-bisphosphate is lower in copper deficient rat cerebellum despite higher content of phosphorylated AMP-activated protein kinase. Exp Biol Med (Maywood) 233(10):1262–1270. https://doi.org/10.3181/0804-RM-132

    Article  CAS  Google Scholar 

  13. Gybina AA, Prohaska JR (2008) Copper deficiency results in AMP-activated protein kinase activation and acetylCoA carboxylase phosphorylation in rat cerebellum. Brain Res 1204:69–76. https://doi.org/10.1016/j.brainres.2008.01.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiggins HL, Wymant JM et al (2015) Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem Pharmacol 93(3):332–342. https://doi.org/10.1016/j.bcp.2014.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filomeni G, Picirillo S et al (2009) The isatin-Schiff base copper(II) complex Cu(isaepy)2 acts as delocalized lipophilic cation, yields widespread mitochondrial oxidative damage and induces AMP-activated protein kinase-dependent apoptosis. Carcinogenesis 30(7):1115–1124. https://doi.org/10.1093/carcin/bgp105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roldan MJ, Chin TY et al (2018) Cytotoxic and angiosuppresive potentials of Zehneria japonica (Thund. Ex. Murray) S.K. Chen (Cucurbitaceae) crude leaf extracts. Phil J Health Res Dev 22(1):43–52

    Google Scholar 

  17. Covarubias LA, Macabeo A et al (2015) Antibacterial activity and concentration dependent modulation of angiogenesis of the saponins of Schefflera luzoniensis. Res J Pharm Biol Chem Sci 6:418–422

    Google Scholar 

  18. Zarcinas BA, Cartwright B et al (1987) Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plan 18(1):131–146. https://doi.org/10.1080/00103628709367806

    Article  CAS  Google Scholar 

  19. Ivsic AG, Tamhina B (2003) Extraction and formation of iron(III) thiocyanate complexes: application for spectrophotometric determination of iron. Croat Chem Acta 76(4):323–328

    CAS  Google Scholar 

  20. Karipcin F, Arabali F, Karatas I (2003) Synthesis and characterization of 4-(alkylaminoisonitrosoacetyl)biphenyls and their complexes. Russ J Coord Chem 32:109–115. https://doi.org/10.1134/S1070328406020059

    Article  CAS  Google Scholar 

  21. Karipcin F, Kabalcilar E (2007) Spectroscopic and thermal studies on solid complexes of 4-(2-pyridylazo)resorcinol with some transition metals. Acta Chim Slov 54:242–247

    CAS  Google Scholar 

  22. Hunt JB, Neece SH, Ginsburg A (1985) The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal Biochem 146(1):150–157

    Article  CAS  Google Scholar 

  23. Smirnova SV, Samarina TO et al (2015) Solubilization of 4-(2-pyridylazo)resorcinol in hydrophobic–hydrophilic ionic liquids and extraction of heavy metal ions from aqueous solutions. Moscow Univ Chem Bull 70(5):229–233. https://doi.org/10.3103/S0027131415050120

    Article  Google Scholar 

  24. Villaflores OB, Macabeo A et al (2010) Phytoconstituents from Alpinia purpurata and their in vitro inhibitory activity against Mycobacterium tuberculosis. Pharmacogn Mag 6(24):339–344. https://doi.org/10.4103/0973-1296.71785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosas C, Sinning M et al (2014) Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res 47(1):27. https://doi.org/10.1186/0717-6287-47-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Montanari RM, Barbosa LCA et al (2011) Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Quím Nova 34:1550–1555

    Article  CAS  Google Scholar 

  27. Prabakaran R, Kirutheka E (2018) GCMS, phytochemicals and antioxidant activities of in vitro callus extracts of Strobilanthes kunthiana (Nees) T. Anderson ex Benth: an endemic plant of acanthaceae. Braz J Biol Sci 5(10):359–372. https://doi.org/10.21472/bjbs.051015

    Article  Google Scholar 

  28. Elaiyaraja A, Chandramohan G (2016) Comparative phytochemical profile of Indoneesiella echioides (L) nees leaves. J Pharmacogn Phytochem 5(9):383–389

    CAS  Google Scholar 

  29. Abubakar MN, Majinda RRT (2016) GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines (Basel). https://doi.org/10.3390/medicines3010003

    Article  Google Scholar 

  30. Saravanan P, Chandramohan G et al (2014) GC–MS analysis of phytochemical constituents in ethanolic bark extract of Ficus religiosa. J Pharm Pharm Sci 6:457–460

    Google Scholar 

  31. Mohamed AM, Quisenberry SS, Moellenbeck DJ (1992) 6,10,14-trimethylpentadecan-2-one: a Bermuda grass phagostimulant to fall armyworm (lepidoptera: noctuidae). J Chem Ecol 18(4):673–682. https://doi.org/10.1007/BF00987827

    Article  CAS  PubMed  Google Scholar 

  32. Chandrasekaran M, Kannathasan K, Venkatesalu V (2008) Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. Z Naturforsch 63(2008):331–336. https://doi.org/10.1515/znc-2008-5-604

    Article  CAS  Google Scholar 

  33. Cunha LC, De Morais SA et al (2013) Chemical composition, cytotoxic and antimicrobial activity of essential oils from Cassia bakeriana Craib. against aerobic and anaerobic oral pathogens. Molecules 18(4):4588–4598. https://doi.org/10.3390/molecules18044588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravi L, Krishnan K (2017) Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol 12(1):20–27

    CAS  Google Scholar 

  35. Belakhdar G, Benjouad A, Abdennebi EH (2015) Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci 6:2778–2783

    CAS  Google Scholar 

  36. Abubakar MN, Majinda RRT (2016) GC–MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines (Basel, Switzerland) 3(1):3

    Google Scholar 

  37. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim I, He YY (2013) Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front Oncol 3:175. https://doi.org/10.3389/fonc.2013.00175

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zulato E, Bergamo F et al (2014) Prognostic significance of AMPK activation in advanced stage colorectal cancer treated with chemotherapy plus bevacizumab. Br J Cancer 111(1):25–32. https://doi.org/10.1038/bjc.2014.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yen CN, Cho YS, Kwon HJ (2017) The effect of indatraline on angiogenesis suppression through HIF-1alpha-mediated VEGF inhibition. Biochem Biophys Res Commun 485(2):349–354. https://doi.org/10.1016/j.bbrc.2017.02.077

    Article  CAS  PubMed  Google Scholar 

  41. Grahame HD (2016) Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 6(1):1–19. https://doi.org/10.1016/j.apsb.2015.06.002

    Article  Google Scholar 

  42. Song Y, Oh GH et al (2017) Fucosterol inhibits adipogenesis through the activation of AMPK and Wnt/β-catenin signaling pathways. Food Sci Biotechnol 26(2):489–494. https://doi.org/10.1007/s10068-017-0067-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kyadari M et al (2013) Evaluation of antiangiogenic and antiproliferative potential of the organic extract of green algae Chlorella pyrenoidosa. Indian J Pharmacol 45(6):569–574. https://doi.org/10.4103/0253-7613.121366

    Article  PubMed  PubMed Central  Google Scholar 

  44. Namvar F, Mohammad R et al (2013) Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). Biomed Res Int 2013:9. https://doi.org/10.1155/2013/604787

    Article  CAS  Google Scholar 

  45. Merrill RD, Shamin AA et al (2012) High prevalence of anemia with lack of iron deficiency among women in rural Bangladesh: a role for thalassemia and iron in groundwater. Asia Pac J Clin Nutr 21(3):416–424

    CAS  PubMed  Google Scholar 

  46. Wu K, Huang C et al (2016) Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta. Sci Rep 6:38716. https://doi.org/10.1038/srep38716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Filomeni G, Cardaci S et al (2011) Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment. Biochem J 437(3):443–453. https://doi.org/10.1042/BJ20110510

    Article  CAS  PubMed  Google Scholar 

  48. Ishida S, Andreux P et al (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA 110(48):19507–19512. https://doi.org/10.1073/pnas.1318431110

    Article  CAS  PubMed  Google Scholar 

  49. Shibuya M (2014) VEGF-VEGFR signals in health and disease. Biomol Ther 22(1):1–9. https://doi.org/10.4062/biomolther.2013.113

    Article  CAS  Google Scholar 

  50. Gu Z, Shan K et al (2015) n-3 polyunsaturated fatty acids and their role in cancer chemoprevention. Cur Pharm Rep 1(5):283–294. https://doi.org/10.1007/s40495-015-0043-9

    Article  CAS  Google Scholar 

  51. Stephenson JA, Al-Taan O et al (2013) The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. J Lipids 2013:261247. https://doi.org/10.1155/2013/261247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Massaro M, Martinelli R et al (2015) Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS ONE 10(6):e0129652. https://doi.org/10.1371/journal.pone.0129652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ibrahim A, Mbodji K et al (2011) Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin Nutr 30(5):678–687. https://doi.org/10.1016/j.clnu.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  54. Park KR, Nam D et al (2011) β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3 K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett 312(2):178–188. https://doi.org/10.1016/j.canlet.2011.08.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by Philippine Department of Science and Technology—Science Education Institute (DOST-SEI). The experiments were done at the University of Santo Tomas Research Center for Natural and Applied Science (UST-RCNAS) and Chung Yuan Christian University (CYCU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver B. Villaflores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villaflores, O.B., Ortega, K.M.M., Empaynado-Porto, A. et al. Anti-angiogenic activity of Gracilaria coronopifolia J.G. Agardh extract by lowering the levels of trace metals (iron, zinc and copper) in duck chorioallantoic membrane and in vitro activation of AMP-kinase. Mol Biol Rep 46, 4151–4160 (2019). https://doi.org/10.1007/s11033-019-04864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04864-x

Keywords

Navigation