Skip to main content

Advertisement

Log in

Three gold indicators for breast cancer prognosis: a case–control study with ROC analysis for novel ratios related to CBC with (ALP and LDH)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Science is still unable to develop a specific strategy for predicting breast cancer in humans. Several attempts are done to obtain the best and closest prognostic predictive biomarkers for breast cancer. The present study aimed to evaluate the impact of novel ratios calculated between the blood indices with CA15.3, alkaline phosphatase and lactate dehydrogenase as prognostic biomarkers in breast cancer. This study was conducted on two groups (Breast cancer Patients group in comparison to a control group who has no tumor family history). All the volunteers are subjected to the routine analysis included liver and kidney function tests, complete blood count with blood indices, tumor markers (CA15.3) assessment, alkaline phosphatase, and lactate dehydrogenase analysis. Thirty different ratios were calculated in the present research between blood indices and three inexpensive serum biomarkers; CA15.3, alkaline phosphatase and lactate dehydrogenase. Fifteen ratios of them were significant in breast cancer group than the control group. Three ratios (PDW/lymphocytes, MPV/lymphocytes, and ALP/RDW) of them gave a sensitivity of 100% with high specificity as indicators for breast cancer incidence. The correlation between significant ratios was very interesting. The more interesting was in the results of subgroup analysis which showed that the ALP/RDW ratio is more specific for pre-menopause while PDW/lymphocytes ratio is more specific for post-menopause. The ratios PDW/lymphocytes, MPV/lymphocytes, and ALP/RDW can be used as prognostic biomarkers in breast cancer patients. The interesting advantage in the results depends on the availability of these indicators in routine blood analysis and will not increase the cost of the diagnostic plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang H, Naghavi M, Allen C et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388:1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

    Article  Google Scholar 

  2. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:524–548. https://doi.org/10.1001/jamaoncol.2016.5688

    Article  PubMed Central  Google Scholar 

  3. Silverstein A, Sood R, Costas-Chavarri A (2016) Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine. Int J Breast Cancer. https://www.hindawi.com/journals/ijbc/2016/4792865/. Accessed 12 Dec 2018

  4. Brinton L, Figueroa J, Adjei E, Ansong D, Biritwum R et al (2017) Factors contributing to delays in diagnosis of breast cancers in Ghana, West Africa. Breast Cancer Res Treat 162:105–114. https://doi.org/10.1007/s10549-016-4088-1

    Article  PubMed  Google Scholar 

  5. Pace LE, Shulman LN (2016) Breast cancer in sub-saharan africa: challenges and opportunities to reduce mortality. Oncologist 21:739–744. https://doi.org/10.1634/theoncologist.2015-0429

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stegner D, Dütting S, Nieswandt B (2014) Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 133(Suppl 2):S149–S157. https://doi.org/10.1016/S0049-3848(14)50025-4

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi H, Abe M, Takumi Y et al (2017) The prognostic impact of the platelet distribution width-to-platelet count ratio in patients with breast cancer. PLoS ONE 12:e0189166. https://doi.org/10.1371/journal.pone.0189166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126:582–588. https://doi.org/10.1182/blood-2014-08-531582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takagi S, Takemoto A, Takami M et al (2014) Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Sci 105:983–988. https://doi.org/10.1111/cas.12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paulsson J, Sjöblom T, Micke P et al (2009) Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am J Pathol 175:334–341. https://doi.org/10.2353/ajpath.2009.081030

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kang DW, Min DS (2010) Platelet-derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFκB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett 294:125–133. https://doi.org/10.1016/j.canlet.2010.01.031

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi H, Fukuyama S, Kubo N et al (2016) The prognostic significance of the preoperative platelet-lymphocyte ratio in japanese patients with localized breast cancer. Adv Breast Cancer Res 05:49–57. https://doi.org/10.4236/abcr.2016.52005

    Article  CAS  Google Scholar 

  13. Takeuchi H, Kawanaka H, Fukuyama S et al (2017) Comparison of the prognostic values of preoperative inflammation-based parameters in patients with breast cancer. PLoS ONE 12:e0177137. https://doi.org/10.1371/journal.pone.0177137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin J, Bath PM, Burr M (1991) Influence of platelet size on outcome after myocardial infarction. Lancet 338:1409–1411. https://doi.org/10.1016/0140-6736(91)92719-I

    Article  CAS  PubMed  Google Scholar 

  15. Yuri Gasparyan A, Ayvazyan L, Mikhailidis DP, Kitas DG (2011) Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des 17:47–58. https://doi.org/10.2174/138161211795049804

    Article  Google Scholar 

  16. Kaito K, Otsubo H, Usui N et al (2005) Platelet size deviation width, platelet large cell ratio, and mean platelet volume have sufficient sensitivity and specificity in the diagnosis of immune thrombocytopenia. Br J Haematol 128:698–702. https://doi.org/10.1111/j.1365-2141.2004.05357.x

    Article  PubMed  Google Scholar 

  17. Zhang F, Chen Z, Wang P et al (2016) Combination of platelet count and mean platelet volume (COP-MPV) predicts postoperative prognosis in both resectable early and advanced stage esophageal squamous cell cancer patients. Tumor Biol 37:9323–9331. https://doi.org/10.1007/s13277-015-4774-3

    Article  CAS  Google Scholar 

  18. Gu M, Zhai Z, Huang L et al (2016) Pre-treatment mean platelet volume associates with worse clinicopathologic features and prognosis of patients with invasive breast cancer. Breast Cancer 23:752–760. https://doi.org/10.1007/s12282-015-0635-6

    Article  PubMed  Google Scholar 

  19. Cho SY, Yang JJ, You E et al (2013) Mean platelet volume/platelet count ratio in hepatocellular carcinoma. Platelets 24:375–377. https://doi.org/10.3109/09537104.2012.701028

    Article  CAS  PubMed  Google Scholar 

  20. Inagaki N, Kibata K, Tamaki T et al (2014) Prognostic impact of the mean platelet volume/platelet count ratio in terms of survival in advanced non-small cell lung cancer. Lung Cancer 83:97–101. https://doi.org/10.1016/j.lungcan.2013.08.020

    Article  PubMed  Google Scholar 

  21. Kumagai S, Tokuno J, Ueda Y et al (2015) Prognostic significance of preoperative mean platelet volume in resected non-small-cell lung cancer. Mol Clin Oncol 3:197–201. https://doi.org/10.3892/mco.2014.436

    Article  PubMed  Google Scholar 

  22. Kim SH, Yeon JH, Park KN et al (2016) The association of Red cell distribution width and in-hospital mortality in older adults admitted to the emergency department. Scand J Trauma Resuscitation Emerg Med. https://doi.org/10.1186/s13049-016-0274-8

    Article  Google Scholar 

  23. Wang F-M, Xu G, Zhang Y, Ma L-L (2014) Red cell distribution width is associated with presence, stage, and grade in patients with renal cell carcinoma. Dis Markers 2014:1–7. https://doi.org/10.1155/2014/860419

    Article  Google Scholar 

  24. Zhang X, Wu Q, Hu T et al (2018) Elevated red blood cell distribution width contributes to poor prognosis in patients undergoing resection for nonmetastatic rectal cancer. Medicine 97:e9641. https://doi.org/10.1097/MD.0000000000009641

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yazici P, Demir U, Bozkurt E et al (2017) The role of red cell distribution width in the prognosis of patients with gastric cancer. Cancer Biomarkers 18:19–25. https://doi.org/10.3233/CBM-160668

    Article  CAS  PubMed  Google Scholar 

  26. Podhorecka M, Halicka D, Szymczyk A et al (2016) Assessment of red blood cell distribution width as a prognostic marker in chronic lymphocytic leukemia. Oncotarget. https://doi.org/10.18632/oncotarget.9055

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qin Y, Wang P, Huang Z et al (2017) The value of red cell distribution width in patients with ovarian cancer. Medicine 96:e6752. https://doi.org/10.1097/MD.0000000000006752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou D, Wu Y, Lin Z et al (2018) Prognostic value of combination of pretreatment red cell distribution width and neutrophil-to-lymphocyte ratio in patients with gastric cancer. Gastroenterol Res Pract 2018:1–8. https://doi.org/10.1155/2018/8042838

    Article  Google Scholar 

  29. Koma Y, Onishi A, Matsuoka H et al (2013) Increased red blood cell distribution width associates with cancer stage and prognosis in patients with lung cancer. PLoS ONE 8:e80240. https://doi.org/10.1371/journal.pone.0080240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baicus C, Caraiola S, Rimbas M et al (2011) Utility of routine hematological and inflammation parameters for the diagnosis of cancer in involuntary weight loss. J Investig Med 59:951–955. https://doi.org/10.2310/JIM.0b013e31822467a3

    Article  CAS  PubMed  Google Scholar 

  31. John A, Kaman L, Behera A et al (2018) Role of red cell distribution width and other blood cell indices in differentiating between benign and malignant diseases of gallbladder. HPB 20:S707–S708. https://doi.org/10.1016/j.hpb.2018.06.1413

    Article  Google Scholar 

  32. Ozkalemkas F, Ali R, Ozkocaman V et al (2005) The bone marrow aspirate and biopsy in the diagnosis of unsuspected nonhematologic malignancy: a clinical study of 19 cases. BMC Cancer https://doi.org/10.1186/1471-2407-5-144

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spell DW, Jones DV, Harper WF, David Bessman J (2004) The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev 28:37–42. https://doi.org/10.1016/j.cdp.2003.10.002

    Article  PubMed  Google Scholar 

  34. Lee M (1992) Colorectal cancer. Recent developments and continuing controversies. Rehab Oncol 10:18. https://doi.org/10.1097/01893697-199210030-00023

    Article  Google Scholar 

  35. Seitanides B, Giakoumakis G, Tsakona C (1988) Increased red cell volume distribution width in patients with bone marrow metastases. J Clin Pathol 41:1246–1246. https://doi.org/10.1136/jcp.41.11.1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma U, Pal D, Prasad R (2014) Alkaline Phosphatase: An Overview. Indian J Clin Biochem 29:269–278. https://doi.org/10.1007/s12291-013-0408-y

    Article  CAS  PubMed  Google Scholar 

  37. Hoylaerts MF, Manes T, Millán JL (1997) Mammalian Alkaline Phosphatases Are Allosteric Enzymes. J Biol Chem 272:22781–22787. https://doi.org/10.1074/jbc.272.36.22781

    Article  CAS  PubMed  Google Scholar 

  38. Fishman WH (1990) Alkaline phosphatase isozymes: recent progress. Clin Biochem 23:99–104. https://doi.org/10.1016/0009-9120(90)80019-F

    Article  CAS  PubMed  Google Scholar 

  39. Pavkovic B, Nenadic LK, Brankovic M et al (2015) P-120 * Serum alkaline phosphatase level as an early diagnostic tool in colorectal cancer. Ann Oncol 26:iv34–iv34. https://doi.org/10.1093/annonc/mdv233.120

    Article  Google Scholar 

  40. Ji F, Fu S-J, Guo Z-Y et al (2016) Prognostic value of combined preoperative lactate dehydrogenase and alkaline phosphatase levels in patients with resectable pancreatic ductal adenocarcinoma. Medicine 95:e4065. https://doi.org/10.1097/MD.0000000000004065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan P, Xie N, Ai J et al (2018) The prognostic significance of albumin-to-alkaline phosphatase ratio in upper tract urothelial carcinoma. Sci Rep 8:12311. https://doi.org/10.1038/s41598-018-29833-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren H-Y, Sun L-L, Li H-Y, Ye Z-M (2015) Prognostic significance of serum alkaline phosphatase level in osteosarcoma: a meta-analysis of published data. Biomed Res Int 2015:1–11. https://doi.org/10.1155/2015/160835

    Article  CAS  Google Scholar 

  43. Rao SR, Snaith AE, Marino D et al (2017) Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer 116:227–236. https://doi.org/10.1038/bjc.2016.402

    Article  CAS  PubMed  Google Scholar 

  44. Ohno I, Mitsunaga S, Nakachi K et al (2011) Clinical significance of serum alkaline phosphatase level in advanced pancreatic cancer. J Clin Oncol 29:183–183. https://doi.org/10.1200/jco.2011.29.4_suppl.183

    Article  Google Scholar 

  45. Singh AK, Pandey A, Tewari M et al (2013) Advanced stage of breast cancer hoist alkaline phosphatase activity: risk factor for females in India. 3 Biotech 3:517–520. https://doi.org/10.1007/s13205-012-0113-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keshaviah A, Dellapasqua S, Rotmensz N et al (2006) CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven International Breast Cancer Study Group trials. Ann Oncol 18:701–708. https://doi.org/10.1093/annonc/mdl492

    Article  Google Scholar 

  47. Chang TC, Wang JK, Hung MW et al (1994) Regulation of the expression of alkaline phosphatase in a human breast cancer cell line. Biochem J 303:199–205. https://doi.org/10.1042/bj3030199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kato M, Brijlall D, Adler SA et al (1992) Effect of hyperosmolality on alkaline phosphatase and stress-response protein 27 of MCF-7 breast cancer cells. Breast Cancer Res Treat 23:241–249. https://doi.org/10.1007/BF01833521

    Article  CAS  PubMed  Google Scholar 

  49. Chalbos D (1983) 397 Progestin-regulated proteins released by the T47D human breast cancer cell line. J Steroid Biochem 19:132. https://doi.org/10.1016/0022-4731(83)91897-6

    Article  Google Scholar 

  50. Tsai L-C, Hung M-W, Chen Y-H et al (2000) Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells: Alkaline phosphatases in MCF-7 cells. Eur J Biochem 267:1330–1339. https://doi.org/10.1046/j.1432-1327.2000.01100.x

    Article  CAS  PubMed  Google Scholar 

  51. Pelizzari G, Gerratana L, Basile D et al (2018) Prognostic role of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in metastatic breast cancer (MBC) patients: First clues for cost-effective biomarkers. J Clin Oncol 36:e13079–e13079. https://doi.org/10.1200/JCO.2018.36.15_suppl.e13079

    Article  Google Scholar 

  52. Chen B, Dai D, Tang H et al (2016) Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer. J Cancer 7:2309–2316. https://doi.org/10.7150/jca.16622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mayne PD, Thakrar S, Rosalki SB et al (1987) Identification of bone and liver metastases from breast cancer by measurement of plasma alkaline phosphatase isoenzyme activity. J Clin Pathol 40:398–403. https://doi.org/10.1136/jcp.40.4.398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ben-Arie A, Hagay Z, Ben-Hur H et al (1999) Elevated serum alkaline phosphatase may enable early diagnosis of ovarian cancer. Eur J Obstet Gynecol Reprod Biol 86:69–71. https://doi.org/10.1016/S0301-2115(99)00054-8

    Article  CAS  PubMed  Google Scholar 

  55. Benham FJ, Povey MS, Harris H (1978) Placental-like alkaline phosphatase in malignant and benign ovarian tumors. Clin Chim Acta 86:201–215. https://doi.org/10.1016/0009-8981(78)90134-1

    Article  CAS  PubMed  Google Scholar 

  56. Ind T, Iles R, Desouza K et al (1995) Serum placental-type alkaline-phosphatase levels in patients with epithelial ovarian-carcinoma. Int J Oncol. https://doi.org/10.3892/ijo.6.2.385

    Article  PubMed  Google Scholar 

  57. Orsaria M, Londero AP, Marzinotto S et al (2017) Placental type alkaline phosphatase tissue expression in ovarian serous carcinoma. Cancer Biomarkers 17:479–486. https://doi.org/10.3233/CBM-160665

    Article  CAS  Google Scholar 

  58. Vergote I, Onsrud M, Nustad K (1987) Placental alkaline phosphatase as a tumor marker in ovarian cancer. Int J Gynecol Obstet 25:485–485. https://doi.org/10.1016/0020-7292(87)90077-4

    Article  Google Scholar 

  59. Jurisic V, Radenkovic S, Konjevic G (2015) The actual role of LDH as tumor marker, biochemical and clinical aspects. In: Scatena R (ed) Advances in cancer biomarkers. Springer, Dordrecht, pp 115–124

    Chapter  Google Scholar 

  60. Vesell ES, Bearn AG (1961) Isozymes of lactic dehydrogenase in human tissues*. J Clin Investig 40:586–591. https://doi.org/10.1172/JCI104287

    Article  CAS  PubMed  Google Scholar 

  61. Miao P, Sheng S, Sun X et al (2013) Lactate dehydrogenase a in cancer: a promising target for diagnosis and therapy: LDHA in Cancer. IUBMB Life 65:904–910. https://doi.org/10.1002/iub.1216

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal A, Gandhe MB, Gupta D, Reddy MV (2016) Preliminary study on serum lactate dehydrogenase (LDH)-prognostic biomarker in carcinoma breast. J Clin Diagn Res 10:BC06. https://doi.org/10.7860/JCDR/2016/17111.7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schneider D, Halperin R, Langer R et al (1997) Peritoneal fluid lactate dehydrogenase in ovarian cancer. Gynecol Oncol 66:399–404. https://doi.org/10.1006/gyno.1997.4792

    Article  CAS  PubMed  Google Scholar 

  64. Williams J (2008) The Declaration of Helsinki and public health. Bull World Health Organ 86:650–651. https://doi.org/10.2471/BLT.08.050955

    Article  PubMed  PubMed Central  Google Scholar 

  65. Korean Medical Association (2014) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Korean Med Assoc 57:899. https://doi.org/10.5124/jkma.2014.57.11.899

    Article  Google Scholar 

  66. Rumble BA (1979) Quality of commercial optimized reagents for measurement of alkaline phosphatase activity in human serum. Pathology 11:332. https://doi.org/10.1016/S0031-3025(16)40006-1

    Article  Google Scholar 

  67. Henry RJ, Chiamori N, Golub OJ, Berkman S (1960) Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol 34:381–398. https://doi.org/10.1093/ajcp/34.4_ts.381

    Article  CAS  PubMed  Google Scholar 

  68. Jia W, Wu J, Jia H et al (2015) The peripheral blood neutrophil-to-lymphocyte ratio is superior to the lymphocyte-to-monocyte ratio for predicting the long-term survival of triple-negative breast cancer patients. PLoS ONE 10:e0143061. https://doi.org/10.1371/journal.pone.0143061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Azab B, Bhatt VR, Phookan J et al (2012) Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Ann Surg Oncol 19:217–224. https://doi.org/10.1245/s10434-011-1814-0

    Article  PubMed  Google Scholar 

  70. Wen J, Ye F, Huang X et al (2015) Prognostic significance of preoperative circulating monocyte count in patients with breast cancer: based on a large cohort study. Medicine 94:e2266. https://doi.org/10.1097/MD.0000000000002266

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krenn-Pilko S, Langsenlehner U, Thurner E-M et al (2014) The elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis in breast cancer patients. Br J Cancer 110:2524–2530. https://doi.org/10.1038/bjc.2014.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krenn-Pilko S, Langsenlehner U, Stojakovic T et al (2015) An elevated preoperative plasma fibrinogen level is associated with poor disease-specific and overall survival in breast cancer patients. Breast 24:667–672. https://doi.org/10.1016/j.breast.2015.08.003

    Article  PubMed  Google Scholar 

  73. Tabassum U, Reddy O, Mukherjee G (2012) Elevated serum haptoglobin is associated with clinical outcome in triple-negative breast cancer patients. Asian Pac J Cancer Prev 13:4541–4544. https://doi.org/10.7314/APJCP.2012.13.9.4541

    Article  PubMed  Google Scholar 

  74. Sicking I, Edlund K, Wesbuer E et al (2014) Prognostic influence of pre-operative C-reactive protein in node-negative breast cancer patients. PLoS ONE 9:e111306. https://doi.org/10.1371/journal.pone.0111306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamamoto K, Awogi T, Okuyama K, Takahashi N (2003) Nuclear localization of alkaline phosphatase in cultured human cancer cells. Med Electron Microsc 36:47–51. https://doi.org/10.1007/s007950300006

    Article  CAS  PubMed  Google Scholar 

  76. Xu X-S, Miao R-C, Zhang L-Q et al (2015) Model based on alkaline phosphatase and gamma-glutamyltransferase for gallbladder cancer prognosis. Asian Pac J Cancer Prev 16:6255–6259. https://doi.org/10.7314/APJCP.2015.16.15.6255

    Article  PubMed  Google Scholar 

  77. Skillen AW, Fifield RD, Sheraidah GS (1972) Serum alkaline phosphatase isoenzyme patterns in disease. Clin Chim Acta 40:21–25. https://doi.org/10.1016/0009-8981(72)90246-X

    Article  CAS  PubMed  Google Scholar 

  78. Stieber P, Nagel D, Ritzke C et al (1992) Significance of Bone Alkaline Phosphatase, CA 15 – 3 and CEA in the Detection of Bone Metastases During the Follow-Up of Patients Suffering from Breast Carcinoma. Clin Chem Lab Med. https://doi.org/10.1515/cclm.1992.30.12.809

    Article  Google Scholar 

  79. Ramaswamy G, Rao VR, Krishnamoorthy L et al (2000) Serum levels of bone alkaline phosphatase in breast and prostate cancers with bone metastasis. Indian J Clin Biochem 15:110–113. https://doi.org/10.1007/BF02883737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mishra S, Sharma DC, Sharma P (2004) Studies of biochemical parameters in breast cancer with and without metastasis. Indian J Clin Biochem 19:71–75. https://doi.org/10.1007/BF02872394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Choudhari A, Desai P, Indumati V, Kadi S (2013) Activities of serum Ada, GGT and alp in carcinoma breast-a case-control study for diagnostic and prognostic significance. Indian J Med Sci 67:123. https://doi.org/10.4103/0019-5359.122740

    Article  PubMed  Google Scholar 

  82. Kim JM, Kwon CHD, Joh J-W et al (2013) The effect of alkaline phosphatase and intrahepatic metastases in large hepatocellular carcinoma. World J Surg Oncol 11:40. https://doi.org/10.1186/1477-7819-11-40

    Article  PubMed  PubMed Central  Google Scholar 

  83. Han KS, Hong SJ (2014) Serum alkaline phosphatase differentiates prostate-specific antigen flare from early disease progression after docetaxel chemotherapy in castration-resistant prostate cancer with bone metastasis. J Cancer Res Clin Oncol 140:1769–1776. https://doi.org/10.1007/s00432-014-1710-7

    Article  CAS  PubMed  Google Scholar 

  84. Tong P-J, Yin L-M, Du W-X et al (2014) Serum bone-specific alkaline phosphatase as a biomarker for osseous metastases in patients with malignant carcinomas: a systematic review and meta-analysis. J Cancer Res Ther 10:140. https://doi.org/10.4103/0973-1482.145842

    Article  CAS  Google Scholar 

  85. Augoff K, Hryniewicz-Jankowska A, Tabola R (2015) Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett 358:1–7. https://doi.org/10.1016/j.canlet.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  86. Han X, Sheng X, Jones HM et al (2015) Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells. J Hematol Oncol 8:2. https://doi.org/10.1186/s13045-014-0097-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Le Scodan R, Massard C, Jouanneau L et al (2012) Brain metastases from breast cancer: proposition of new prognostic score including molecular subtypes and treatment. J Neuro Oncol 106:169–176. https://doi.org/10.1007/s11060-011-0654-x

    Article  CAS  Google Scholar 

  88. Nieder C, Dalhaug A, Haukland E et al (2015) Tumor marker analyses in patients with brain metastases: patterns of practice and implications for survival prediction research. Tumor Biolo 36:6471–6476. https://doi.org/10.1007/s13277-015-3337-y

    Article  CAS  Google Scholar 

  89. Passardi A, Scarpi E, Tamberi S et al (2015) Impact of pre-treatment lactate dehydrogenase levels on prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. PLoS ONE 10:e0134732. https://doi.org/10.1371/journal.pone.0134732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scartozzi M, Giampieri R, Maccaroni E et al (2012) Pre-treatment lactate dehydrogenase levels as predictor of efficacy of first-line bevacizumab-based therapy in metastatic colorectal cancer patients. Br J Cancer 106:799–804. https://doi.org/10.1038/bjc.2012.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown JE, Cook RJ, Lipton A, Coleman RE (2012) Serum lactate dehydrogenase is prognostic for survival in patients with bone metastases from breast cancer: a retrospective analysis in bisphosphonate-treated patients. Clin Cancer Res 18:6348–6355. https://doi.org/10.1158/1078-0432.CCR-12-1397

    Article  CAS  PubMed  Google Scholar 

  92. Shen J, Ran ZH, Zhang Y et al (2009) Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: a gender-stratified, cohort analysis. Thromb Res 123:604–611. https://doi.org/10.1016/j.thromres.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  93. Plantureux L, Mège D, Crescence L et al (2018) Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers 10:441. https://doi.org/10.3390/cancers10110441

    Article  PubMed Central  Google Scholar 

  94. Lin RJ, Afshar-Kharghan V, Schafer AI (2014) Paraneoplastic thrombocytosis: the secrets of tumor self-promotion. Blood 124:184–187. https://doi.org/10.1182/blood-2014-03-562538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kayacan O, Karnak D, Beder S et al (2006) Impact of TNF-α and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients. Am J Clin Oncol 29:328–335. https://doi.org/10.1097/01.coc.0000221300.72657.e0

    Article  CAS  PubMed  Google Scholar 

  96. Cain CJ, Manilay JO (2013) Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies. Exp Hematol 41:3–16. https://doi.org/10.1016/j.exphem.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  97. Sulzbacher I, Birner P, Trieb K et al (2003) Expression of platelet-derived growth factor-AA is associated with tumor progression in osteosarcoma. Mod Pathol 16:66–71. https://doi.org/10.1097/01.MP.0000043522.76788.0A

    Article  PubMed  Google Scholar 

  98. Seretis (2013) Is red cell distribution width a novel biomarker of breast cancer activity? Data from a pilot study. J Clin Med Res 5:121–126. https://doi.org/10.4021/jocmr1214w

    Article  PubMed  PubMed Central  Google Scholar 

  99. Shrihari TG (2017) Inflammation-related cancer or cancer-related inflammation. Eur Res J 4: 1–5. https://doi.org/10.18621/eurj.312327

    Article  Google Scholar 

  100. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40. https://doi.org/10.1016/j.semcancer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  101. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  102. Allen MD, Jones LJ (2015) The role of inflammation in progression of breast cancer: friend or foe? (Review). Int J Oncol 47:797–805. https://doi.org/10.3892/ijo.2015.3075

    Article  CAS  PubMed  Google Scholar 

  103. Demirkol S, Balta S, Cakar M et al (2013) Red cell distribution width: a novel inflammatory marker in clinical practice. Cardiol J 20:209. https://doi.org/10.5603/CJ.2013.0037

    Article  PubMed  Google Scholar 

  104. Periša V, Zibar L, Sinčić-Petričević J et al (2015) Red blood cell distribution width as a simple negative prognostic factor in patients with diffuse large B-cell lymphoma: a retrospective study. Croatian Med J 56:334–343. https://doi.org/10.3325/cmj.2015.56.334

    Article  Google Scholar 

  105. Riedl J, Posch F, Königsbrügge O et al (2014) Red cell distribution width and other red blood cell parameters in patients with cancer: association with risk of venous thromboembolism and mortality. PLoS ONE 9:e111440. https://doi.org/10.1371/journal.pone.0111440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fu P, Yao M, Liu Y et al (2014) Prognostic value of preoperative inflammatory markers in Chinese patients with breast cancer. Onco Targets Ther 7:1743–1752. https://doi.org/10.2147/OTT.S69657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang D-P, Ma R-M, Xiang Y-Q (2016) Utility of red cell distribution width as a prognostic factor. Young Breast Cancer Patients Med 95:e3430. https://doi.org/10.1097/MD.0000000000003430

    Article  Google Scholar 

  108. Moon H, Roh J-L, Lee S et al (2016) Prognostic value of nutritional and hematologic markers in head and neck squamous cell carcinoma treated by chemoradiotherapy. Radiother Oncol 118:330–334. https://doi.org/10.1016/j.radonc.2015.10.029

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the collaboration of all participants and staff at Zagazig University Hospital, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha Mohamed Said.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Ethical approval

The study was approved by the Ethics Committee of the Zagazig University.

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, N.M. Three gold indicators for breast cancer prognosis: a case–control study with ROC analysis for novel ratios related to CBC with (ALP and LDH). Mol Biol Rep 46, 2013–2027 (2019). https://doi.org/10.1007/s11033-019-04650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04650-9

Keywords

Navigation