Skip to main content

Advertisement

Log in

Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In autoimmune disease body’s own immune system knows healthy cells as undesired and foreign cells. Over 80 types of autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clinical studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395

    Article  CAS  PubMed  Google Scholar 

  2. Ray S, Sonthalia N, Kundu S, Ganguly S (2012) Autoimmune disorders: an overview of molecular and cellular basis in today’s perspective. J Clin Cell Immunol S 10:003

    Google Scholar 

  3. Abbas AK, Lichtman AH, Pillai S (2014) Cellular and molecular immunology E-book: Elsevier Health Sciences

  4. Jancar S, Crespo MS (2005) Immune complex-mediated tissue injury: a multistep paradigm. Trends Immunol 26(1):48–55

    Article  CAS  PubMed  Google Scholar 

  5. Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280

    Article  PubMed  Google Scholar 

  6. Roeleveld DM, Koenders MI (2015) The role of the Th17 cytokines IL-17 and IL-22 in rheumatoid arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 74(1):101–107

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H-L, Zheng X-Y, Zhu J (2013) Th1/Th2/Th17/Treg cytokines in Guillain–Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev 24(5):443–453

    Article  CAS  PubMed  Google Scholar 

  8. Li Y-F, Zhang S-X, Ma X-W, Xue Y-L, Gao C, Li X-Y (2017) Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: a meta-analysis. Multiple Scler Relat Disord 18:20–25

    Article  Google Scholar 

  9. Nicoletti F, Créange A, Orlikowski D, Bolgert F, Mangano K, Metz C et al (2005) Macrophage migration inhibitory factor (MIF) seems crucially involved in Guillain–Barré syndrome and experimental allergic neuritis. J Neuroimmunol 168(1–2):168–174

    Article  CAS  PubMed  Google Scholar 

  10. Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G et al (2017) MIF and D-DT are potential disease severity modifiers in male MS subjects. Proc Natl Acad Sci 114(40):E8421–E9

    Article  CAS  PubMed  Google Scholar 

  11. Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K et al (2018) Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. J Neuroimmunol 322:46–56

    Article  CAS  PubMed  Google Scholar 

  12. Karo-Atar D, Bitton A, Benhar I, Munitz A (2018) Therapeutic targeting of the interleukin-4/interleukin-13 signaling pathway: in allergy and beyond. BioDrugs 32:1–20

    Article  CAS  Google Scholar 

  13. Fagone P, Mangano K, Pesce A, Portale TR, Puleo S, Nicoletti F (2016) Emerging therapeutic targets for the treatment of hepatic fibrosis. Drug Discov Today 21(2):369–375

    Article  CAS  PubMed  Google Scholar 

  14. Barcellini W, Rizzardi G, Borghi M, Nicoletti F, Fain C, Del Papa N et al (1996) In vitro type-1 and type-2 cytokine production in systemic lupus erythematosus: lack of relationship with clinical disease activity. Lupus 5(2):139–145

    Article  CAS  PubMed  Google Scholar 

  15. Nicoletti F, Di Marco R, Patti F, Reggio E, Nicoletti A, Zaccone P et al (1998) Blood levels of transforming growth factor-beta 1 (TGF-β1) are elevated in both relapsing remitting and chronic progressive multiple sclerosis (MS) patients and are further augmented by treatment with interferon-beta 1b (IFN-β1b). Clin Exp Immunol 113(1):96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dujmovic I, Mangano K, Pekmezovic T, Quattrocchi C, Mesaros S, Stojsavljevic N et al (2009) The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: the elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J Neuroimmunol 207(1–2):101–106

    Article  CAS  PubMed  Google Scholar 

  17. Nadkarni S, Mauri C, Ehrenstein MR (2007) Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J Exp Med 204(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y (2017) Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol. https://doi.org/10.4049/jimmunol.1601532

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lai Y, Dong C (2015) Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int Immunol 28(4):181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fragoulis GE, Siebert S, McInnes IB (2016) Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Ann Rev Med 67:337–353

    Article  CAS  PubMed  Google Scholar 

  21. Scharl M, Vavricka R, Rogler G (2013) New anti-cytokines for IBD: what is in the pipeline? Curr Drug Targets 14(12):1405–1420

    Article  CAS  PubMed  Google Scholar 

  22. Ramos-Casals M, Diaz-Lagares C, Cuadrado M-J, Khamashta MA, Group BS (2010) Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun Rev 9(3):188–193

    Article  CAS  PubMed  Google Scholar 

  23. Zintzaras E, Voulgarelis M, Moutsopoulos HM (2005) The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med 165(20):2337–2344

    Article  PubMed  Google Scholar 

  24. Pérez-De-Lis M, Retamozo S, Flores-Chávez A, Kostov B, Perez-Alvarez R, Brito-Zerón P et al (2017) Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGEAS Registry). Expert Opin Drug Saf 16(11):1255–1271

    Article  CAS  PubMed  Google Scholar 

  25. Kalden JR, Schulze-Koops H (2017) Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol 13(12):707

    Article  CAS  PubMed  Google Scholar 

  26. Tyndall A (2011) Successes and failures of stem cell transplantation in autoimmune diseases. ASH Educ Program Book 2011(1):280–284

    Google Scholar 

  27. Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M et al (2015) Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant 24(12):2615–2627

    Article  PubMed  Google Scholar 

  28. Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. https://doi.org/10.1155/2015/394917

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blanco B, Herrero-Sánchez MdC, Rodríguez-Serrano C, García-Martínez ML, Blanco JF, Muntión S et al (2016) Immunomodulatory effects of bone marrow versus adipose tissue-derived mesenchymal stromal cells on NK cells: implications in the transplantation setting. Eur J Haematol 97(6):528–537

    Article  CAS  PubMed  Google Scholar 

  30. Amiri F, Jahanian-Najafabadi A, Roudkenar MH (2015) In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress Chaperones 20(2):237–251

    Article  CAS  PubMed  Google Scholar 

  31. Roushandeh AM, Bahadori M, Roudkenar MH (2017) Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch Med Res 48(2):133–146

    Article  CAS  PubMed  Google Scholar 

  32. Fontaine MJ, Shih H, Schäfer R, Pittenger MF (2016) Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev 30(1):37–43

    Article  PubMed  Google Scholar 

  33. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042

    Article  CAS  PubMed  Google Scholar 

  34. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK (2009) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499

    Article  CAS  PubMed  Google Scholar 

  37. Bassi ÊJ, de Almeida DC, Moraes-Vieira PMM, Câmara NOS (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 8(2):329–342

    Article  CAS  PubMed  Google Scholar 

  38. Vianello F, Dazzi F (2008) Mesenchymal stem cells for graft-versus-host disease: a double edged sword? Leukemia 22(3):463-465

    Article  Google Scholar 

  39. Halabian R, Tehrani HA, Jahanian-Najafabadi A, Roudkenar MH (2013) Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 18(6):785–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiani AA, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A, Roudkenar MH (2013) HIF-1α confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res 44(3):185–193

    Article  CAS  PubMed  Google Scholar 

  41. Wong RS (2011) Mesenchymal stem cells: angels or demons? BioMed Res Int. https://doi.org/10.1155/2011/459510

    Article  Google Scholar 

  42. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Short B, Brouard N, Driessen R, Simmons P (2001) Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy 3(5):407–408

    Article  CAS  PubMed  Google Scholar 

  44. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584

    Article  CAS  PubMed  Google Scholar 

  45. Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A et al (2014) Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 19(5):657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amiri F, Halabian R, Dehgan Harati M, Bahadori M, Mehdipour A, Mohammadi Roushandeh A et al (2015) Positive selection of Wharton’s jelly-derived CD105 + cells by MACS technique and their subsequent cultivation under suspension culture condition: a simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 20(4):208–216

    Article  CAS  PubMed  Google Scholar 

  47. Troyer DL, Weiss ML (2008) Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599

    Article  PubMed  Google Scholar 

  48. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  49. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525

    Article  CAS  PubMed  Google Scholar 

  52. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47–57

    Article  CAS  PubMed  Google Scholar 

  54. Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2(11):859

    Article  CAS  PubMed  Google Scholar 

  55. Götherström C (2007) Immunomodulation by multipotent mesenchymal stromal cells. Transplantation 84(1):S35–S37

    Article  PubMed  Google Scholar 

  56. De Miguel P, Fuentes-Julian M, Blazquez-Martinez S, Pascual C AY, Aller A, Arias M et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591

    Article  PubMed  Google Scholar 

  57. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  58. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K et al (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552

    Article  PubMed  PubMed Central  Google Scholar 

  59. Castro-Manrreza ME (2016) Participation of mesenchymal stem cells in the regulation of immune response and cancer development. Boletín Médico Del Hospital Infantil de México (English Edition) 73(6):380–387

    Article  Google Scholar 

  60. Le Blanc K, Tammik L, Sundberg B, Haynesworth S, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20

    Article  PubMed  Google Scholar 

  61. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al (2006) Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398

    Article  CAS  PubMed  Google Scholar 

  62. Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827

    Article  CAS  PubMed  Google Scholar 

  63. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT et al (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7(1):66–74

    Article  CAS  PubMed  Google Scholar 

  64. Lee H-J, Kim S-N, Jeon M-S, Yi T, Song SU (2017) ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Sci Rep 7:44486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon S-o et al (2016) Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo-and autoimmunity in the eye. Proc Natl Acad Sci 113(1):158–163

    Article  CAS  PubMed  Google Scholar 

  66. Yan L, Zheng D, Xu R (2018) Critical role of TNF signaling in mesenchymal stem cell-based therapy for autoimmune and inflammatory diseases. Front Immunol 9:1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Angulski AB, Capriglione LG, Batista M, Marcon BH, Senegaglia AC, Stimamiglio MA et al (2017) The protein content of extracellular vesicles derived from expanded human umbilical cord blood-derived CD133+ and human bone marrow-derived mesenchymal stem cells partially explains why both sources are advantageous for regenerative medicine. Stem Cell Rev Rep 13(2):244–257

    Article  CAS  PubMed  Google Scholar 

  68. Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L (2018) Extracellular vesicles as conveyors of membrane-derived bioactive lipids in immune system. Int J Mol Sci 19(4):1227

    Article  CAS  PubMed Central  Google Scholar 

  69. Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Álvarez V, Tarazona R et al (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5:556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P (2018) TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 43:25–37

    Article  CAS  PubMed  Google Scholar 

  71. Gebler A, Zabel O, Seliger B (2012) The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 18(2):128–134

    Article  CAS  PubMed  Google Scholar 

  72. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726

    Article  CAS  PubMed  Google Scholar 

  73. Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S et al (2009) Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 126(1–2):37–42

    Article  CAS  PubMed  Google Scholar 

  74. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    Article  CAS  PubMed  Google Scholar 

  75. Liu W-h, Liu J-j, Wu J, Zhang L-l, Liu F, Yin L et al (2013) Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS ONE 8(1):e55487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  77. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162

    Article  CAS  PubMed  Google Scholar 

  78. Zhao Q, Ren H, Han Z (2016) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2(1):3–20

    Article  Google Scholar 

  79. He M, Shi X, Yang M, Yang T, Li T, Chen J (2019) Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 311:15–32

    Article  CAS  PubMed  Google Scholar 

  80. Mammana S, Bramanti P, Mazzon E, Cavalli E, Basile MS, Fagone P et al (2018) Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 9(9):8263

    Article  PubMed  PubMed Central  Google Scholar 

  81. Donia M, Mangano K, Amoroso A, Mazzarino MC, Imbesi R, Castrogiovanni P et al (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+ CD25+ Foxp3+ regulatory T cells. J Autoimmun 33(2):135–140

    Article  CAS  PubMed  Google Scholar 

  82. Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9(6):482

    Article  CAS  PubMed  Google Scholar 

  83. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761

    Article  CAS  PubMed  Google Scholar 

  84. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J et al (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis Rheum 52(5):1595–1603

    Article  CAS  PubMed  Google Scholar 

  85. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006–1019

    Article  CAS  PubMed  Google Scholar 

  86. Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH et al (2008) Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 153(2):269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA (2015) Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Res Int. https://doi.org/10.1155/2015/527926

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bassi ÊJ, Moraes-Vieira PM, Sá CSM, Almeida DC, Vieira LM, Cunha CS et al (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. https://doi.org/10.2337/db11-0844

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams P, Birman E et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002

    Article  CAS  PubMed  Google Scholar 

  90. Jang E, Jeong M, Kim S, Jang K, Kang B-K, Lee DY et al (2016) Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T-cell development. Cell Transplant 25(1):1–15

    Article  PubMed  Google Scholar 

  91. Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J et al (2010) Allogeneic mesenchymal stem cells do not protect NZB × NZW F1 mice from developing lupus disease. Clin Exp Immunol 161(1):176–186

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE 9(9):e107001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regenerat Med 5(1):121–143

    Article  Google Scholar 

  95. Shimada Y, Minna JD (2017) Exosome mediated phenotypic changes in lung cancer pathophysiology. Transl Cancer Res 6(S6):S1040–S1042

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simons M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  CAS  PubMed  Google Scholar 

  97. Rad F, Pourfathollah AA, Yari F, Mohammadi S, Kheirandish M (2016) Microvesicles preparation from mesenchymal stem cells. Med J IR Iran 30:398

    Google Scholar 

  98. Nassar W, El-Ansary M, Aziz MA, El-Hakim E (2015) Extracellular vesicles: fundamentals and clinical relevance. Egypt J Intern Med 27(1):1

    Article  Google Scholar 

  99. Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    Article  CAS  PubMed  Google Scholar 

  100. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M (2015) Isolation of extracellular vesicles: determining the correct approach. Int J Mol Med 36(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L et al (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3(1):25011

    Article  CAS  PubMed  Google Scholar 

  103. Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  CAS  PubMed  Google Scholar 

  104. Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1(1):18374

    Article  CAS  Google Scholar 

  105. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beer KB, Wehman AM (2017) Mechanisms and functions of extracellular vesicle release in vivo—what we can learn from flies and worms. Cell Adhes Migr 11(2):135–150

    Article  CAS  Google Scholar 

  107. Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8(4):220–232

    Article  CAS  PubMed  Google Scholar 

  108. Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13(10–11):1637–1653

    Article  CAS  PubMed  Google Scholar 

  109. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5(7):e11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2012) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771

    Article  CAS  PubMed  Google Scholar 

  111. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Skalnikova HK (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211

    Article  CAS  Google Scholar 

  113. Kim H-S, Choi D-Y, Yun SJ, Choi S-M, Kang JW, Jung JW et al (2011) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11(2):839–849

    Article  CAS  PubMed  Google Scholar 

  114. Zhang H-C, Liu X-B, Huang S, Bi X-Y, Wang H-X, Xie L-X et al (2012) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21(18):3289–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Park C, Huang JZ, Ji JX, Ding Y (2013) Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans Pattern Anal Mach Intell 35(3):1–1

    Article  Google Scholar 

  116. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    Article  PubMed  Google Scholar 

  117. Kalra H, Drummen GP, Mathivanan S (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17(2):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M et al (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J. https://doi.org/10.1155/2015/657086

    Article  Google Scholar 

  119. Ferguson SW, Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Controlled Release 228:179–190

    Article  CAS  Google Scholar 

  120. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654

    Article  CAS  Google Scholar 

  121. Ratajczak MZ, Ratajczak J (2016) Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 5(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  122. Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G (2015) Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther 6(1):153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S et al (2014) Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev 23(13):1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nawaz M, Fatima F, Vallabhaneni KC, Penfornis P, Valadi H, Ekström K et al (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int. https://doi.org/10.1155/2016/1073140

    Article  PubMed  Google Scholar 

  125. Nawaz M, Fatima F (2017) Extracellular vesicles, tunneling nanotubes, and cellular interplay: synergies and missing links. Front Mol Biosci 4:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J et al (2015) LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13(1):308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ti D, Hao H, Fu X, Han W (2016) Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 59(12):1305–1312

    Article  CAS  PubMed  Google Scholar 

  128. Di Rocco G, Baldari S, Toietta G (2016) Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int. https://doi.org/10.1155/2016/5029619

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4(1):26316

    Article  PubMed  Google Scholar 

  130. Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C et al (2014) Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 33(5):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Budoni M, Fierabracci A, Luciano R, Petrini S, Di Ciommo V, Muraca M (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transpl 22(2):369–379

    Article  Google Scholar 

  132. Henao Agudelo JS, Braga TT, Amano MT, Cenedeze MA, Cavinato RA, Peixoto-Santos AR et al (2017) Mesenchymal stromal cell-derived microvesicles regulate an internal pro-inflammatory program in activated macrophages. Front Immunol 8:881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shigemoto-Kuroda T, Oh JY, Kim D-k, Jeong HJ, Park SY, Lee HJ et al (2017) MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Rep 8(5):1214–1225

    Article  CAS  Google Scholar 

  134. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C et al (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8(5):1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kordelas L, Rebmann V, Ludwig A, Radtke S, Ruesing J, Doeppner T et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28(4):970

    Article  CAS  PubMed  Google Scholar 

  136. Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P et al (2016) Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia 59(2):325–333

    Article  CAS  PubMed  Google Scholar 

  137. Sharma J, Hampton JM, Valiente GR, Wada T, Steigelman H, Young MC et al (2017) Therapeutic development of mesenchymal stem cells or their extracellular vesicles to inhibit autoimmune-mediated inflammatory processes in systemic lupus erythematosus. Front Immunol 8:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hai B, Shigemoto-Kuroda T, Zhao Q, Lee RH, Liu F (2018) Inhibitory effects of iPSC-MSCs and their extracellular vesicles on the onset of sialadenitis in a mouse model of Sjögren’s Syndrome. Stem Cells Int. https://doi.org/10.1155/2018/2092315

    Article  PubMed  PubMed Central  Google Scholar 

  139. Soundara Rajan T, Giacoppo S, Diomede F, Bramanti P, Trubiani O, Mazzon E (2017) Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. Int J Immunopathol Pharmacol 30(3):238–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM (2018) Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem 119(11):9433–9443

    Article  CAS  PubMed  Google Scholar 

  141. Rajan TS, Giacoppo S, Diomede F, Ballerini P, Paolantonio M, Marchisio M et al (2016) The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci Rep 6:38743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Laso-García F, Ramos-Cejudo J, Carrillo-Salinas FJ, Otero-Ortega L, Feliú A, Gómez-de Frutos M et al (2018) Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS ONE 13(9):e0202590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen Z, Wang H, Xia Y, Yan F, Lu Y (2018) Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 201(8):2472–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhu L, Huang X, Yu W, Chen H, Chen Y, Dai Y (2018) Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 50(2):e12871

    Article  CAS  Google Scholar 

  145. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid A-A, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54

    Article  CAS  PubMed  Google Scholar 

  146. Jacquelin S, Licata F, Dorgham K, Hermand P, Poupel L, Guyon E et al (2013) CX3CR1 reduces Ly6Chigh-monocyte motility within, and release from the bone marrow after chemotherapy in mice. Blood. https://doi.org/10.1182/blood-2013-01-480749

    Article  PubMed  Google Scholar 

  147. Hidalgo-Garcia L, Galvez J, Rodriguez-Cabezas ME, Anderson PO (2018) Can a conversation between mesenchymal stromal cells and macrophages solve the crisis in the inflamed intestine? Front Pharmacol 9:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F (2017) Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells 35(3):812–823

    Article  CAS  PubMed  Google Scholar 

  149. Bruno S, Deregibus MC, Camussi G (2015) The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation. Immunol Lett 168(2):154–158

    Article  CAS  PubMed  Google Scholar 

  150. Favaro E, Deregibus M, Camussi E, Granata R, Ghigo E, Cavallo PP et al (2012) Mesenchymal stem cells-derived microvesicles modulate cellular immune response to islet antigen GAD in type 1 diabetes. 15th International & 14th European Congress of Endocrinology; BioScientifica

  151. Tamura R, Uemoto S, Tabata Y (2016) Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regenerat 36(1):26

    Article  CAS  Google Scholar 

  152. Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK (2013) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244

    Article  CAS  Google Scholar 

  153. Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noël D (2017) Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci 18(4):889

    Article  CAS  PubMed Central  Google Scholar 

  154. Perez-Hernandez J, Redon J, Cortes R (2017) Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. Int J Mol Sci 18(4):717

    Article  CAS  PubMed Central  Google Scholar 

  155. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L et al (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7(1):4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of this study was supported by Guilan University of Medical Sciences (Grant No: IR.GUMS.REC.1396.343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, F., Ghorbani, M., Mohammadi Roushandeh, A. et al. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep 46, 1533–1549 (2019). https://doi.org/10.1007/s11033-019-04588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04588-y

Keywords

Navigation