Skip to main content
Log in

Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In recent decades, fungus laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researches due to their wide range of biotechnological and industrial applications. In the present study, we have cloned a gene encoding laccase (poxa1b) from Pleurotus ostreatus and then heterologously expressed in Escherichia coli BL21. The biochemical properties of POXA1b were characterized using ABTS as a typical substrate of laccases. Moreover, the in vitro oxidation of the benzo[a]pyrene was investigated in the presence or absence of ABTS. The codon-optimized poxa1b showed higher expression yields and efficiency in comparison with the wild-type (p < 0.01). The maximum activity of POXA1b (2075 UL-1) was observed after incubation at 50 °C for 0.5 h and the enzyme retained more than 85% of its initial activity after 2 h incubation at 25–45 °C. The optimum pH of the enzyme was pH4 and the enzyme was stable when being incubated at pH range from 2.5 to 4.5 for 2 h in the absence of ABTS, the enzyme oxidized a little amount of benzo[a]pyrene, whereas its oxidation enhanced following the ABTS addition. These findings indicate POXA1b of P. ostreatus as a promising candidate for further biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26

    Article  CAS  Google Scholar 

  2. Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5(3):318–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mate D, García-Burgos C, García-Ruiz E, Ballesteros AO, Camarero S, Alcalde M (2010) Laboratory evolution of high-redox potential laccases. Chem Biol 17(9):1030–1041

    Article  CAS  PubMed  Google Scholar 

  4. Piscitelli A, Pezzella C, Giardina P, Faraco V, Sannia G (2010) Heterologous laccase production and its role in industrial applications. Bioengineered Bugs 1(4):254–264

    Article  Google Scholar 

  5. Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10(6):1457–1467

    Article  CAS  PubMed  Google Scholar 

  7. Piscitelli A, Pezzella C, Lettera V, Giardina P, Faraco V, Sannia G (2013) Fungal laccases: structure, function and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29(10):480–489

    Article  CAS  PubMed  Google Scholar 

  10. Pezzella C, Guarino L, Piscitelli A (2015) How to enjoy laccases. Cell Mol Life Sci 72(5):923–940

    Article  CAS  PubMed  Google Scholar 

  11. Macellaro G, Baratto MC, Piscitelli A, Pezzella C, De Biani FF, Palmese A, Piumi F, Record E, Basosi R, Sannia G (2014) Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Appl Microbiol Biotechnol 98(11):4949–4961

    Article  CAS  PubMed  Google Scholar 

  12. Pezzella C, Giacobelli VG, Lettera V, Olivieri G, Cicatiello P, Sannia G, Piscitelli A (2017) A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. J Biotechnol 259:175–181

    Article  CAS  PubMed  Google Scholar 

  13. Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58(5):582–594

    Article  CAS  PubMed  Google Scholar 

  14. Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus1. Biochem J 341(Pt 3):655

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Garzillo AM, Colao MC, Buonocore V, Oliva R, Falcigno L, Saviano M, Santoro AM, Zappala R, Bonomo RP, Bianco C (2001) Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. J Protein Chem 20(3):191–201

    Article  CAS  PubMed  Google Scholar 

  16. Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69(4):428–439

    Article  CAS  PubMed  Google Scholar 

  17. Pezzella C, Giacobbe S, Giacobelli VG, Guarino L, Kylic S, Sener M, Sannia G, Piscitelli A (2016) Green routes towards industrial textile dyeing: a laccase based approach. J Mol Catal B 134:274–279

    Article  CAS  Google Scholar 

  18. Miele A, Giardina P, Sannia G, Faraco V (2010) Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. J Appl Microbiol 108(3):998–1006

    Article  CAS  PubMed  Google Scholar 

  19. Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Amoresano A, Sannia G (2016) Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chem 196:1272–1278

    Article  CAS  PubMed  Google Scholar 

  20. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211

    Article  CAS  PubMed  Google Scholar 

  21. Swartz J (1996) Escherichia coli recombinant DNA technology. In: Escherichia coli and Salmonella: cellular and molecular biology, vol 2. ASM Press, Washington, DC, pp 1693–1711

    Google Scholar 

  22. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59(1):94–102

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Jörnvall H, Berndt KD, Oppermann U (2004) Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun 313(1):89–96

    Article  CAS  PubMed  Google Scholar 

  24. Montazeri-Najafabady N, Ghasemi Y, Mobasher MA, Ghasemian A, Rasoul-Amini S, Ebrahimi S (2013) Codon optimization, cloning and expression of interleukin 11 in two different E. coli systems. J Pure Appl Microbiol 7:2717–2722

    CAS  Google Scholar 

  25. Yadava A, Ockenhouse CF (2003) Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun 71(9):4961–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K (2008) Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl Environ Microbiol 74(21):6538–6546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fei D, Zhang H, Diao Q, Jiang L, Wang Q, Zhong Y, Fan Z, Ma M (2015) Codon optimization, expression in Escherichia coli, and immunogenicity of recombinant chinese sacbrood virus (CSBV) structural proteins VP1, VP2, and VP3. PLoS ONE 10(6):e0128486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhou Z, Schnake P, Xiao L, Lal AA (2004) Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expr Purif 34(1):87–94

    Article  CAS  PubMed  Google Scholar 

  29. Zylicz-Stachula A, Zolnierkiewicz O, Sliwinska K, Jezewska-Frackowiak J, Skowron PM (2014) Modified ‘one amino acid-one codon’engineering of high GC content TaqII-coding gene from thermophilic Thermus aquaticus results in radical expression increase. Microb Cell Fact 13(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Guan Z-B, Song C-M, Zhang N, Zhou W, Xu C-W, Zhou L-X, Zhao H, Cai Y-J, Liao X-R (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal B 101:1–6

    Article  CAS  Google Scholar 

  31. More SS, PS R, Malini S (2011) Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res 2011:248735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Linke D, Bouws H, Peters T, Nimtz M, Berger RG, Zorn H (2005) Laccases of Pleurotus sapidus: characterization and cloning. J Agric Food Chem 53(24):9498–9505

    Article  CAS  PubMed  Google Scholar 

  33. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Appl Catal A 373(1–2):147–153

    Article  CAS  Google Scholar 

  34. Bhattacharya S, Das A, Palaniswamy M, Angayarkanni J (2017) Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures. J Basic Microbiol 57(2):95–103

    Article  CAS  PubMed  Google Scholar 

  35. Othman AM, Elshafei AM, Hassan MM, Haroun BM, Elsayed MA, Farrag AA (2014) Purification, biochemical characterization and applications of Pleurotus ostreatus ARC280 laccase. Br Microbiol Res J 4(12):1418–1439

    Article  CAS  Google Scholar 

  36. Xiao Y, Tu X, Wang J, Zhang M, Cheng Q, Zeng W, Shi Y (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60(6):700–707

    Article  CAS  PubMed  Google Scholar 

  37. Petroski RJ, Peczynska-Czoch W, Rosazza JP (1980) Analysis, production, and isolation of an extracellular laccase from Polyporus anceps. Appl Environ Microbiol 40(6):1003–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mansur M, Arias ME, Copa-Patino JL, Flärdh M, González AE (2003) The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95(6):1013–1020

    Article  CAS  PubMed  Google Scholar 

  39. Sadhasivam S, Savitha S, Swaminathan K, Lin F-H (2008) Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem 43(7):736–742

    Article  CAS  Google Scholar 

  40. Forootanfar H, Faramarzi MA, Shahverdi AR, Yazdi MT (2011) Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Biores Technol 102(2):1808–1814

    Article  CAS  Google Scholar 

  41. Younes SB, Sayadi S (2011) Purification and characterization of a novel trimeric and thermotolerant laccase produced from the ascomycete Scytalidium thermophilum strain. J Mol Catal B 73(1–4):35–42

    Article  CAS  Google Scholar 

  42. Jung S, Park S (2008) Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol Lett 30(4):717–722

    Article  CAS  PubMed  Google Scholar 

  43. Ng I-S, Zhang X, Zhang Y, Lu Y (2013) Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Appl Biochem Biotechnol 169(7):2223–2235

    Article  CAS  PubMed  Google Scholar 

  44. Grandes-Blanco AI, Tlecuitl-Beristain S, Díaz R, Sánchez C, Téllez-Téllez M, Márquez-Domínguez L, Santos-López G, Díaz-Godínez G (2017) Heterologous expression of laccase (LACP83) of Pleurotus ostreatus. BioResources 12 (2):3211–3221

  45. Ihssen J, Reiss R, Luchsinger R, Thöny-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang C, Cui D, Lu L, Zhang N, Yang H, Zhao M, Dai S (2016) Cloning and characterization of CotA laccase from Bacillus subtilis WD23 decoloring dyes. Ann Microbiol 66(1):461–467

    Article  CAS  Google Scholar 

  47. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272(50):31301–31307

    Article  CAS  PubMed  Google Scholar 

  48. Patel H, Gupte S, Gahlout M, Gupte A (2014) Purification and characterization of an extracellular laccase from solid-state culture of Pleurotus ostreatus HP-1. 3 Biotech 4(1):77–84

    Article  PubMed  Google Scholar 

  49. Adamafio N, Sarpong N, Mensah C, Obodai M (2012) Extracellular laccase from Pleurotus ostreatus strain EM-1: thermal stability and response to metal ions. Asian J Biochem 7:143–150

    Article  CAS  Google Scholar 

  50. Palmeiri G, Giardina P, Marzullo L, Desiderio B, Nittii G, Cannio R, Sannia G (1993) Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 39(4–5):632–636

    Article  Google Scholar 

  51. Tinoco R, Pickard M, Vazquez-Duhalt R (2001) Kinetic differences of purified laccases from six. Lett Appl Microbiol 32:331–335

    Article  CAS  PubMed  Google Scholar 

  52. Xu L, Wang H, Ng T (2012) A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. BioMed Res Int. https://doi.org/10.1155/2012/536725

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guo W, Yao Z, Zhou C, Li D, Chen H, Shao Q, Li Z, Feng H (2012) Purification and characterization of three laccase isozymes from the white rot fungus Trametes sp. HS-03. Afr J Biotech 11(31):7916–7922

    CAS  Google Scholar 

  54. Zou Y-J, Wang H-X, Ng T-B, Huang C-Y, Zhang J-X (2012) Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol 50(1):72–78

    Article  CAS  PubMed  Google Scholar 

  55. Asgher M, Iqbal HMN, Asad MJ (2012) Kinetic characterization of purified laccase produced from Trametes versicolor IBL-04 in solid state bio-processing of corncobs. BioResources 7(1):1171–1188

    Google Scholar 

  56. Yoshitake A, Katayama Y, Nakamura M, Iimura Y, Kawai S, Morohoshi N (1993) N-linked carbohydrate chains protect laccase III from proteolysis in Coriolus versicolor. Microbiology 139(1):179–185

    CAS  Google Scholar 

  57. Soden D, O’Callaghan J, Dobson A (2001) Molecular cloning of a laccase isozyme gene in the heterologous Pichia pastoris host. Microbiology 148:4003–4014

    Article  Google Scholar 

  58. Madhavi V, Lele S (2009) Laccase: properties and applications. BioResources 4(4):1694–1717

    Google Scholar 

  59. Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  60. Pozdnyakova N, Turkovskaya O, Yudina E, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42(1):56–61

    Article  CAS  Google Scholar 

  61. Hu X, Wang C, Wang L, Zhang R, Chen H (2014) Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis. World J Microbiol Biotechnol 30(4):1285–1290

    Article  CAS  PubMed  Google Scholar 

  62. Ike PTL, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto ALM, Souza DHF (2015) Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. SpringerPlus 4(1):654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Daroch M, Houghton CA, Moore JK, Wilkinson MC, Carnell AJ, Bates AD, Iwanejko LA (2014) Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzyme Microb Technol 58:1–7

    Article  PubMed  CAS  Google Scholar 

  64. Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C (2009) Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol Lett 31(6):837–843

    Article  PubMed  CAS  Google Scholar 

  65. Tamayo-Ramos J, van Berkel WJ, de Graaff LH (2012) Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Fact 11(1):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mukhopadhyay M, Banerjee R (2015) Purification and biochemical characterization of a newly produced yellow laccase from Lentinus squarrosulus MR13. 3 Biotech 5(3):227–236

    Article  PubMed  Google Scholar 

  67. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45(1–2):57–88

    Article  CAS  Google Scholar 

  68. Morozova O, Shumakovich G, Shleev S, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43(5):523–535

    Article  CAS  Google Scholar 

  69. Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of benzo[a]pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech 4(2):205–211

    Article  PubMed  Google Scholar 

  70. Dodor DE, Hwang H-M, Ekunwe SI (2004) Oxidation of anthracene and benzo [a] pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Technol 35(2–3):210–217

    Article  CAS  Google Scholar 

  71. Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62(12):4563–4567

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22(5):335–341

    Article  CAS  Google Scholar 

  73. Potthast A, Rosenau T, Chen C-L, Gratzl JS (1995) Selective enzymic oxidation of aromatic methyl groups to aldehydes. J Organ Chem 60(14):4320–4321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Khayam Bioeconomy Institute (KBI) and Alzahra University for supporting this work. This publication represents a section of one PhD thesis by Ms. Mahnaz Mohtashami at the faculty of Biological Science of Alzahra University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Haddad-Mashadrizeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtashami, M., Fooladi, J., Haddad-Mashadrizeh, A. et al. Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Mol Biol Rep 46, 981–990 (2019). https://doi.org/10.1007/s11033-018-4555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4555-3

Keywords

Navigation