Skip to main content

Advertisement

Log in

How to enjoy laccases

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase “never-ending story” has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385

    CAS  PubMed  Google Scholar 

  2. Piscitelli A, Pezzella C, Lettera V, Giardina P, Faraco V, Sannia G (2013) Fungal laccases: structure, function and application. In: Maria de Lourdes TMP and Rai M (eds) Fungal enzymes: progress and prospects. pp 113–151

  3. Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5(3):318–332

    PubMed Central  PubMed  Google Scholar 

  4. Jeon JR, Chang YS (2013) Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. Trends Biotechnol 31(6):335–341

    CAS  PubMed  Google Scholar 

  5. Pereira L, Bastos C, Tzanov T, Cavaco-Paulo A, Guebitz GM (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3:66–69

    CAS  Google Scholar 

  6. Tzanov T, Basto C, Gübitz GM, Cavaco-Paulo A (2003) Laccases to improve the whiteness in a conventional bleaching of Cotton. Macromol Mater Eng 288:807–810

    CAS  Google Scholar 

  7. Ren X, Buschle-Diller G (2007) Oxidoreductases for modification of linen fibers. Colloid Surface A 299:15–21

    CAS  Google Scholar 

  8. Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14:350–354

    CAS  PubMed  Google Scholar 

  9. Abou-Okeil A, El-Shafie A, El Zawahry MM (2010) Ecofriendly laccase–hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency. Ultrason Sonochem 17:383–390

    CAS  PubMed  Google Scholar 

  10. Goncalves I, Herrero-Yniesta V, Perales Arce I, Escrigas Castaneda M, Cavaco-Paulo A, Silva C (2014) Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrason Sonochem 21:1535–1543

    CAS  PubMed  Google Scholar 

  11. Tian L, Branford-White C, Wang W, Nie H, Zhu L (2012) Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. Int J Biol Macromol 50:782–787

    CAS  PubMed  Google Scholar 

  12. Rodriguez-Couto S (2012) Laccases for denim bleaching: an eco-friendly alternative. Open Textil J 5:1–7

    CAS  Google Scholar 

  13. Solís-Oba M, Almendáriz J, Viniegra-González G (2008) Biotechnological treatment for colorless denim and textil wastewater treatment with laccase and ABTS. Rev Int Contam ambient 24:5–11

    Google Scholar 

  14. Montazer M, Sadeghian Maryan A (2010) Influences of different enzymatic treatment on denim garment. Appl Biochem Biotech 160:2114–2128

    CAS  Google Scholar 

  15. Pazarlıoğlu NK, Sariişik M, Telefoncu A (2005) Laccase: production by Trametes versicolor and application to denim washing. Process Biochem 40:1673–1678

    Google Scholar 

  16. Hossain KhMG, González MD, Juan AR, Tzanov T (2010) Enzyme-mediated coupling of a bi-functional phenolic compound onto wool to enhance its physical, mechanical and functional properties. Enzyme Microb Tech 46:326–330

    CAS  Google Scholar 

  17. Schröder M, Aichernig N, Gübitz GM, Kokol V (2007) Enzymatic coating of lignocellulosic surfaces with polyphenols. Biotechnol J 2:334–341

    Google Scholar 

  18. Hossain KhMG, González MD, Lozano GR, Tzanov T (2009) Multifunctional modification of wool using an enzymatic process in aqueous-organic media. J Biotechnol 141:58–63

    CAS  PubMed  Google Scholar 

  19. Silva C, Matamá T, Kim SY, Padrão J, Nugroho Prasetyo E, Kudanga T, Nyanhongo GS, Guebitz GM, Casal M, Cavaco-Paulo A (2011) Antimicrobial and antioxidant linen via laccase-assisted grafting. React Funct Polym 71:713–720

    CAS  Google Scholar 

  20. Kim SY, Cavaco-Paulo A (2012) Laccase-catalysed protein–flavonoid conjugates for flax fibre modification. Appl Microbiol Biotechnol 93:585–600

    CAS  PubMed  Google Scholar 

  21. Yoon MY (1998) Process for improved shrink resistance in wool. WO Patent 98/27264

  22. Lantto R, Schänberg C, Buchert J (2004) Effects of laccase-mediator combinations on wool. Textile Res J 74:713–717

    CAS  Google Scholar 

  23. Zhang Y, Dong A, Wang Q, Fan X, Cavaco-Paulo A, Zhang Y (2014) Conductive cotton prepared by polyaniline in situ polymerization using laccase. Appl Biochem Biotech 174:820–831

    CAS  Google Scholar 

  24. Tzanov T, Silva C, Zille A, Oliveira J, Cavaco-Paulo A (2003) Effect of some process parameters in enzymatic dyeing of wool. Appl Biochem Biotech 111:1–14

    CAS  Google Scholar 

  25. Hadzhiyska H, Calafell M, Gibert JM, Dagà JM, Tzanov T (2006) Laccase-assisted dyeing of cotton. Biotechnol Lett 28:755–759

    CAS  PubMed  Google Scholar 

  26. Kim SY, Moldes D, Cavaco-Paulo A (2007) Laccase for enzymatic coloration of unbleached cotton. Enzyme Microb Tech 40:1788–1793

    CAS  Google Scholar 

  27. Suparno O, Covington AD, Evans CS (2007) Application of diphenols for dyeing. J Soc Leath Tech Ch 91:139–141

    CAS  Google Scholar 

  28. Kim SY, Lopez C, Guebitz GM, Cavaco-Paulo A (2008) Biological coloration of flax fabrics with flavonoids using laccase from Trametes hirsuta. Eng Life Sci 8:324–330

    CAS  Google Scholar 

  29. Blanco DC, González DM, Monmany DM, Tzanov T (2009) Dyeing properties, synthesis, isolation and characterization of an in situ generated phenolic pigment, covalently bound to cotton. Enzyme Microb Technol 44:380–385

    CAS  Google Scholar 

  30. Guimarães C, Kim S, Silva C, Cavaco-Paulo A (2011) In situ laccase-assisted overdyeing of denim using flavonoids. Biotechnol J 6:1272–1279

    PubMed  Google Scholar 

  31. Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Technol 48:195–208

    CAS  PubMed  Google Scholar 

  32. Polak J, Jarosz-Wilkołazka A (2012) Structure/redox potential relationship of simple organic compounds as potential precursors of dyes for laccase-mediated transformation. Biotechnol Prog 23:93–102

    Google Scholar 

  33. Polak J, Jarosz-Wilkolazka A (2010) Whole-cell fungal transformation of precursors into dyes. Microb Cell Fact 9:51

    PubMed Central  PubMed  Google Scholar 

  34. Ganachaud Ch, Garfagnoli V, Tron T, Iacazio G (2008) Trimerisation of indole through laccase catalysis. Tetrahedron Lett 49:2476–2478

    CAS  Google Scholar 

  35. Kim S, Silva C, Evtuguin DV, Gamelas JAF, Cavaco-Paulo A (2011) Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. Appl Microbiol Biotechnol 89:981–987

    CAS  PubMed  Google Scholar 

  36. Herter S, Mikolasch A, Michalik D, Hammer E, Schauer F et al (2011) C–N coupling of 3-methylcatechol with primary amines using native and recombinant laccases from Trametes versicolor and Pycnoporus cinnabarinus. Tetrahedron 67:9311–9321

    CAS  Google Scholar 

  37. Forte S, Polak J, Valensin D, Taddei M, Basosi R, Vanhulle S et al (2010) Synthesis and structural characterization of a novel phenoxazinone dye by use of a fungal laccase. J Mol Catal B Enzym 63:116–120

    CAS  Google Scholar 

  38. Bruyneel F, Enaud E, Billottet L, Vanhulle S, Marchand-Brynaert J (2008) Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation into a novel phenoxazinone dye by use of laccase. Eur J Org Chem 2008:72–79

    Google Scholar 

  39. Bruyneel F, Payen O, Rescigno A, Tinant B, Marchand-Brynaert J (2009) Laccase mediated synthesis of novel substitutes phenoxazine chromophores featuring tuneable water solubility. Chem Eur J 15:8283–8295

    CAS  PubMed  Google Scholar 

  40. Setti L, Giuliani S, Spinozzi G, Pifferi PG (1999) Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazoline hydrazone and methoxyphenols. Enzyme Microb Tech 25:285–289

    CAS  Google Scholar 

  41. Martorana A, Bernini C, Valensin D, Sinicropi A, Pogni R, Basosi R et al (2011) Insights into the homocoupling reaction of 4-methylamino benzoic acid mediated by Trametes versicolor laccase. Mol BioSyst 7:2967–2969

    CAS  PubMed  Google Scholar 

  42. Enaud E, Trovaslet M, Bruyneel F, Billottet L, Karaaslan R, Sener ME et al (2010) A novel azoanthraquinone dye made through innovative enzymatic process. Dye Pigments 85:99–108

    CAS  Google Scholar 

  43. Enaud E, Bols ChM, Casas Infantes A, Groslambert S, Hercher Ch, Iacazio G et al (2010) New azo dyes. WO Patent 2010/003969, 14 Jan 2010

  44. Osma JF, Toca-Herrera JL, Rodriguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010:918761

    PubMed Central  PubMed  Google Scholar 

  45. Labat E, Morel MH, Rouau X (2000) Wheat gluten phenolic acids: occurrence and fate upon mixing. J Agric Food Chem 48:6280–6283

    CAS  PubMed  Google Scholar 

  46. Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K (2006) Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Science 43:152–159

    CAS  Google Scholar 

  47. Flander L, Holopainen U, Kruus K, Buchert J (2011) Effects of tyrosinase and laccase on oat proteins and quality parameters of gluten-free oat breads. J Agr Food Chem 59:8385–8390

    CAS  Google Scholar 

  48. Flander L, Rouau X, Morel MH, Autio K, Seppanen-Laakso T, Kruus K, Buchert J (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agr Food Chem 56:5732–5742

    CAS  Google Scholar 

  49. Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Food Chem 119:1465–1473

    CAS  Google Scholar 

  50. Tsuchiya R, Petersen BR, Christensen S (2000) Oxidoreductases for reduction of malodor. US Patent 6074631 A

  51. Petersen BR, Mathiasen TE, Peelen B, Andersen H (1996) Use of laccase for deoxygenation of oil-containing product such as salad dressing. PCT international application WO 9635768 A1

  52. Bouwens EM, Trivedi K, Van Vliet C, Winkel C (1999) Method of enhancing color in a tea based foodstuff. US Patent 5879730 A

  53. Takemori T, Ito Y, Ito M, Yoshama M (1992) Flavor and taste improvement of cacao nib by enzymatic treatment. Japan Kokai Tokkyo Koho JP 04126037 A2

  54. Mensah CA, Adamafio NA, Amaning-Kwarteng K, Rodrigues FK (2012) Reduced tannin content of laccase-treated cocoa (Theobroma cacao) pod husk. Int J Biol Chem 6:31–36

    CAS  Google Scholar 

  55. Tanriöven D, Ekşi A (2005) Phenolic compounds in pear juice from different cultivars. Food Chem 93:89–93

    Google Scholar 

  56. Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Tech 13:205–216

    CAS  Google Scholar 

  57. Minussi RC, Rossi M, Bologna L, Rotilio D, Pastore GM, Durán N (2007) Phenols removal in musts: strategy for wine stabilization by laccase. J Mol Catal B-Enzym 45:102–107

    CAS  Google Scholar 

  58. Conrad LS, Sponholz WR, Berker O (2000) Treatment of cork with a phenol oxidizing enzyme. US Patent 6152966

  59. Mathiasen TE (1995) Laccase and beer storage. PCT international application, WO 9521240 A2

  60. Sammartino M, Piacquadio P, De Stefano G, Sciancalepore V (1998) Apple juice stabilization by conventional and innovative methods. Ind. Bevande 27:367–369

    CAS  Google Scholar 

  61. Giovanelli G, Ravasini G (1993) Apple juice stabilization by combined enzyme-membrane filtration process. Lebensm Wiss Technol 26:1–7

    CAS  Google Scholar 

  62. Gökmen V, Borneman Z, Nijhuis HH (1998) Improved ultrafiltration for color reduction and stabilization of apple juice. J Food Sci 63:504–507

    Google Scholar 

  63. Ritter G, Maier G, Schoepplein E, Dietrich H (1992) The application of polyphenoloxidase in the processing of apple juice. Bulletin de Liaison-Groupe Polyphenols 16:209–212

    CAS  Google Scholar 

  64. Cantarelli C, Giovanelli G (1990) Stabilization of pome and grape juice against phenolic deterioration by enzymic treatments. Inst Fruchtsaft Union Wiss Tech Komm 21:35–57

    CAS  Google Scholar 

  65. Neifar M, Ellouze-Ghorbel R, Kamoun A, Baklouti S, Mokni A, Jaouani A, Ellouze-Chaabouni S (2011) Effective clarification of pomegranate juice using laccase treatment optimized by response surface methodology followed by ultrafiltration. J Food Process Eng 34:1199–1219

    CAS  Google Scholar 

  66. Gassara-Chatti F, Brar SK, Ajila CM, Verma M, Tyagi RD, Valero JR (2013) Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem 137:18–24

    CAS  PubMed  Google Scholar 

  67. Norsker M, Jensen M, Adler-Nissen J (2000) Enzymatic gelation of sugar beet pectin in food products. Food Hydrocolloid 14:237–243

    CAS  Google Scholar 

  68. Kuuva T, Lantto R, Reinikainen T, Buchert J, Autio K (2003) Rheological properties of laccase-induced sugar beet pectin gels. Food Hydrocolloid 17:679–684

    CAS  Google Scholar 

  69. Littoz F, McClements DJ (2008) Bio-mimetic approach to improving emulsion stability: cross-linking adsorbed beet pectin layers using laccase. Food Hydrocolloid 22:1203–1211

    CAS  Google Scholar 

  70. Zeeb B, Gibis M, Fischer L, Weiss J (2012) Crosslinking of interfacial layers in multilayered oil-in-water emulsions using laccase: characterization and pH-stability. Food Hydrocolloid 27:126–136

    CAS  Google Scholar 

  71. Jung J, Wicker L (2012) Laccase mediated conjugation of heat treated beta-lactoglobulin and sugar beet pectin. Carbohyd Polym 89:1244–1249

    CAS  Google Scholar 

  72. Ma H, Forssell P, Partanen R, Buchert J, Boer H (2011) Improving laccase catalyzed cross-linking of whey protein isolate and their application as emulsifiers. J Agric Food Chem 59:1406–1414

    CAS  PubMed  Google Scholar 

  73. Gazme B, Madadlou A (2014) Fabrication of whey protein–pectin conjugate particles through laccase-induced gelation of microemulsified nanodroplets. Food Hydrocolloid 40:189–195

    CAS  Google Scholar 

  74. Mattinen ML, Kruus K, Buchert J, Nielsen JH, Andersen HJ, Steffensen CL (2005) Laccase-catalysed polymerization of tyrosine-containing peptides. FEBS J 272:3640–3650

    CAS  PubMed  Google Scholar 

  75. Stanic D, Monogioudi E, Dilek E, Radosavljevic J, Atanaskovic-Markovic M, Vuckovic O, Raija L, Mattinen M, Buchert J, Cirkovic Velickovic T (2010) Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein. Mol Nutr Food Res 54:1273–1284

    CAS  PubMed  Google Scholar 

  76. Tantoush Z, Stanic D, Stojadinovic M, Ognjenovic J, Mihajlovic L, Atanaskovic-Markovic M, Cirkovic T (2011) Digestibility and allergenicity of b-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics. Food Chem 125:84–91

    CAS  Google Scholar 

  77. Kontopidis G, Holt C, Sawyer L (2004) Beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796

    CAS  PubMed  Google Scholar 

  78. Ghindilis AL, Gavrilova VP, Yaropolov AI (1992) Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. Biosens Bioelectron 7:127–131

    CAS  PubMed  Google Scholar 

  79. Di Fusco M, Tortolini C, Deriu D, Mazzei F (2010) Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 81:235–240

    PubMed  Google Scholar 

  80. Ibarra-Escutia P, Gomez JJ, Calas-Blanchard C, Marty JL, Ramirez-Silva MT (2010) Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 81:1636–1642

    CAS  PubMed  Google Scholar 

  81. Eremia SA, Vasilescu I, Radoi A, Litescu SC, Radu GL (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110:164–170

    CAS  PubMed  Google Scholar 

  82. Medina-Plaza C, de Saja JA, Rodriguez-Mendez ML (2014) Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens Bioelectron 57:276–283

    CAS  PubMed  Google Scholar 

  83. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353

    CAS  PubMed  Google Scholar 

  84. Hollmann F, Arends IWCE (2012) Enzyme initiated radical polymerizations. Polymers 4:759–793

    Google Scholar 

  85. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    CAS  PubMed  Google Scholar 

  86. Hollmann F, Gumulya Y, Toelle C, Liese A, Thum O (2008) Evaluation of the laccase from Myceliophthora thermophila as industrial biocatalyst for polymerization reactions. Macromolecules 41:8520–8524

    CAS  Google Scholar 

  87. Walde P, Guo ZW (2011) Enzyme-catalyzed chemical structure-controlling template polymerization. Soft Matter 7:316–331

    CAS  Google Scholar 

  88. Mita N, Tawaki S, Uyama H, Kobayashi S (2002) Structural control in enzymatic oxidative polymerization of phenols with varying the solvent and substituent nature. Chem Lett 31:402–403

    Google Scholar 

  89. Ikeda R, Sugihara J, Uyama H, Kobayashi S (1998) Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polym Int 47:295–301

    CAS  Google Scholar 

  90. Mita N, Tawaki S, Uyama H, Kobayashi S (2004) Precise structure control of enzymatically synthesized polyphenols. Bull Chem Soc Jpn 77:1523–1527

    CAS  Google Scholar 

  91. Mita N, Tawaki SI, Uyama H, Kobayashi S (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257

    CAS  Google Scholar 

  92. Witayakran S, Ragauskas AJ (2009) Synthetic applications of laccase in green chemistry. Adv Synth Catal 35:1187–1209

    Google Scholar 

  93. Piscitelli A, Amore A, Faraco V (2012) Last advances in synthesis of added value compounds by laccase-mediated biocatalysis. Curr Org Chem 16:2508–2524

    CAS  Google Scholar 

  94. Uyama H (2007) Artificial polymeric flavonoids: synthesis and applications. Macromol Biosci 7:410–422

    CAS  PubMed  Google Scholar 

  95. Es-Safi NE, Ghidouche S, Ducrot PH (2007) Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules 12:2228–2258

    CAS  PubMed  Google Scholar 

  96. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agr Food Chem 46:1887–1892

    CAS  Google Scholar 

  97. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Laccase-catalyzed synthesis and antioxidant property of poly(catechin). Macromol Biosci 3:758–764

    CAS  Google Scholar 

  98. Jadhav SB, Singhal RS (2014) Laccase–gum Arabic conjugate for preparation of water-soluble oligomer of catechin with enhanced antioxidant activity. Food Chem 150:9–16

    CAS  PubMed  Google Scholar 

  99. Desentis-Mendoza RM, Hernandez-Sanchez H, Moreno A, Emilio RDC, Chel-Guerrero L, Tamariz J, Jaramillo-Flores ME (2006) Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromol 7:1845–1854

    CAS  Google Scholar 

  100. Kobayashi S, Uyama H, Ikeda R (2001) Artificial urushi. Chem Eur J 7:4755–4760

    Google Scholar 

  101. Kobayashi S, Ikeda R, Oyabu H, Tanaka H (2000) Artificial Urushi: design, synthesis, and enzymatic curing of new urushiol analogues. Chem Lett 29:1214–1215

    Google Scholar 

  102. Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial urushi via an environmentally benign process. Bull Chem Soc Japan 74:1067–1073

    CAS  Google Scholar 

  103. Otrokhov GV, Morozova OV, Vasil’eva IS, Shumakovich GP, Zaitseva EA, Khlupova ME, Yaropolov AI (2013) Biocatalytic synthesis of conducting polymers and prospects for its application. Biochemistry (Moscow) 78:1539–1553

    CAS  Google Scholar 

  104. Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY (2003) Laccase-catalyzed synthesis of conducting polyaniline. Enzyme Microb Technol 33:556–564

    CAS  Google Scholar 

  105. Vasil’eva IS, Morozova OV, Shumakovich GP, Yaropolov AI (2009) Synthesis of electroconductive polyaniline using immobilized laccase. Appl Biochem Microbiol 45:27–30

    Google Scholar 

  106. Shumakovich GP, Vasil’eva IS, Morozova OV, Khomenkov VG, Staroverova IN, Budashov IA, Kurochkin IN, Boyeva JA, Sergeyev VG, Yaropolov AI (2010) A comparative study of water dispersible polyaniline nanocomposites prepared by laccase-catalyzed and chemical methods. J Appl Polym Sci 117:1544–1550

    CAS  Google Scholar 

  107. Streltsov AV, Shumakovich GP, Morozova OV, Gorbacheva MA, Yaropolov AI (2008) Micellar laccase-catalyzed synthesis of electroconductive polyaniline. Appl Biochem Microb 44:264–270

    CAS  Google Scholar 

  108. Streltsov AV, Morozova OV, Arkharova NA, Klechkovskaya VV, Staroverova IN, Shumakovich GP, Yaropolov AI (2009) Synthesis and characterization of conducting polyaniline prepared by laccase-catalyzed method in sodium dodecylbenzenesulfonate micellar solutions. J Appl Pol Sci 114:928–934

    CAS  Google Scholar 

  109. Shumakovich G, Streltsov A, Gorshina E, Rusinova T, Kurova V, Vasil’eva I, Otrokhov G, Morozova O, Yaropolov A (2011) Laccase-catalyzed oxidative polymerization of aniline dimer (N-phenyl-1,4-phenylenediamine) in aqueous micellar solution of sodium dodecylbenzenesulfonate. J Mol Catal B Enzym 69:83–88

    CAS  Google Scholar 

  110. Shumakovich GP, Kurova V, Vasil’eva IS, Pankratov D, Otrokhov G, Morozova O, Yaropolov A (2012) Laccase-mediated synthesis of conducting polyaniline. J Mol Catal B Enzym 77:105–110

    CAS  Google Scholar 

  111. Junker K, Kissner R, Rakvin B, Guo Z, Willeke M, Busato S, Weber T, Walde P (2014) The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enzyme Microb Technol 55:72–84

    CAS  PubMed  Google Scholar 

  112. Vasil’eva IS, Morozova OV, Shumakovich GP, Shleev SV, Sakharov IY, Yaropolov AI (2007) Laccase-catalyzed synthesis of optically active polyaniline. Synth Met 157:684–689

    Google Scholar 

  113. Shumakovich GP, Otrokhov G, Vasil’eva IS, Pankratov D, Morozova O, Yaropolov A (2012) Laccase-mediated polymerization of 3,4-ethylenedioxythiophene (EDOT). J Mol Catal B Enzym 81:66–68

    CAS  Google Scholar 

  114. George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, Testa C, Alexander PM, Langer R, Sur M (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26:3511–3519

    CAS  PubMed  Google Scholar 

  115. Song YK, Palmore GTR (2005) Conductive Polypyrrole via enzyme catalysis. J Phys Chem B 109:19278–19287

    CAS  PubMed  Google Scholar 

  116. López J, Alonso-Omlin EM, Hernández-Alcántara JM, Bárzana E, Gimeno M (2014) Novel photoluminescent material by laccase-mediated polymerization of 4-fluoroguaiacol throughout defluorination. J Mol Catal B Enzymatic 109:70–75

    Google Scholar 

  117. Nyanhongo GS, Kudanga T, Nugroho Prasetyo E, Gübitz GM (2011) Enzymatic polymer functionalisation: advances in laccase and peroxidase derived lignocellulose functional polymers. Adv Biochem Eng Biotechnol 125:47–68

    CAS  PubMed  Google Scholar 

  118. Chandra RP, Ragauskas AJ (2001) Laccase: the renegade of fiber modification. In: Tappi pulping conference. pp 1041–1051

  119. Chandra RP, Ragauskas AJ (2002) Elucidating the effects of laccase on the physical properties of high-kappa kraft pulps. Prog Biotechnol 21:165–172

    CAS  Google Scholar 

  120. Chandra RP, Wolfaardt F, Ragauskas AJ (2003) Biografting of celestine blue onto a high kappa kraft pulp. ACS Sym Ser 855:66–80

    CAS  Google Scholar 

  121. Chandra RP, Lehtonen LK, Ragauskas AJ (2004) Modification of high lignin content kraft pulps with laccase to improve paper strength properties. Laccase treatment in the presence of gallic acid. Biotechnol Prog 20:255–261

    CAS  PubMed  Google Scholar 

  122. Chandra RP, Felby C, Ragauskas AJ (2004) Improving laccase-facilitated grafting of 4-hydroxybenzoic acid to high-kappa kraft pulps. J Wood Chem Technol 24:69–81

    CAS  Google Scholar 

  123. Witayakran S, Ragauskas AJ (2009) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 44:176–181

    CAS  Google Scholar 

  124. Fillat A, Colom JF, Vidal T (2010) A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol 101:4104–4110

    CAS  PubMed  Google Scholar 

  125. Aracri E, Fillat A, Colom JF, Gutiérrez A, Del Río JC, Martínez AT, Vidal T (2010) Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases. Bioresour Technol 101:8211–8216

    CAS  PubMed  Google Scholar 

  126. Aracri E, Roncero MB, Vidal T (2011) Studying the effects of laccase-catalysed grafting of ferulic acid on sisal pulp fibers. Bioresour Technol 102:7555–7560

    CAS  PubMed  Google Scholar 

  127. Aracri E, Vidal T, Ragauskas AJ (2011) Wet strength development in sisal cellulose fibers by effect of a laccase–TEMPO treatment. Carbohyd Polym 84:1384–1390

    CAS  Google Scholar 

  128. Aracri E, Valls C, Vidal T (2012) Paper strength improvement by oxidative modification of sisal cellulose fibers with laccase–TEMPO system: influence of the process variables. Carbohyd Polym 88:830–837

    CAS  Google Scholar 

  129. Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43:84–92

    CAS  Google Scholar 

  130. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Díaz P, Roncero MB (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohyd Polym 87:146–152

    CAS  Google Scholar 

  131. Widsten P, Heathcote C, Kandelbauer A, Guebitz G, Nyanhongo GS, Nugroho Prasetyo E, Kudanga T (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Proc Biochem 45:1072–1081

    CAS  Google Scholar 

  132. Fackler K, Kuncinger T, Ters T, Srebotnik E (2008) Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards. Holzforschung 62:223–229

    CAS  Google Scholar 

  133. Kudanga T, Nugroho Prasetyo E, Sipilä J, Nyanhongo GS, Guebitz G (2010) Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme Microb Technol 46:272–280

    CAS  Google Scholar 

  134. Kudanga T, Nugroho Prasetyo E, Widsten P, Kandelbauer A, Jury S, Heathcote C, Sipilä J, Weber H, Nyanhongo GS, Guebitz GM (2010) Laccase-catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresour Technol 101:2793–2799

    CAS  PubMed  Google Scholar 

  135. Kudanga T, Nugroho Prasetyo E, Sipilä J, Guebitz GM, Nyanhongo GS (2010) Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. J Biotechnol 149:81–87

    CAS  PubMed  Google Scholar 

  136. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    CAS  Google Scholar 

  137. Felby C, Pedersen LS, Nielsen BR (1997) Enhanced auto-adhesion of wood fibers using phenol oxidases. Holzforschung 51:281–286

    CAS  Google Scholar 

  138. Widsten P, Laine JE, Tuominen S, Qvintus-Leino P (2003) Effect of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated hardwood fibers. J Adhes Sci Technol 17:67–78

    CAS  Google Scholar 

  139. Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20:181–189

    CAS  Google Scholar 

  140. Kharazipour A, Hüttermann A, Kühne G, Rong M (1993) Process for glueing wood chips and articles produced by this process. Eur Pat Appl EP0565109

  141. Kharazipour A, Mai C, Hüttermann A (1998) Polyphenols for compounded materials. Polym Degrad Stabil 59:237–243

    CAS  Google Scholar 

  142. Qvintus-Leino P, Widsten P, Tuominen S, Laine J, Kunnas J (2003) Method of producing compressed layered structures such as fiberboard or similar wood-based product. Int Pat Appl WO03047826

  143. Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394

    PubMed  Google Scholar 

  144. Tsapikouni TS, Missirlis YF (2008) Protein–material interactions: from micro-to-nano scale. Mater Sci Eng B 152:2–7

    CAS  Google Scholar 

  145. Nady N, Schroën K, Franssen MCR, van Lagen B, Murali S, Boom RM, Mohy Eldin MS, Zuilhof H (2011) Mild and highly flexible enzyme-catalyzed modification of poly(ethersulfone) membranes. ACS Appl Mater Interfaces 3:801–810

    CAS  PubMed  Google Scholar 

  146. Nady N, Schroën K, Franssen MCR, Fokkink R, Mohy Eldin MS, Zuilhof H, Boom RM (2012) Enzyme-catalyzed modification of PES surfaces: reduction in adsorption of BSA, dextrin and tannin. J Colloid Interface Sci 378:191–200

    CAS  PubMed  Google Scholar 

  147. Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell M, Hessel s Julich WD, Lindequist U (2006) Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull 54(5):632–638

    CAS  PubMed  Google Scholar 

  148. Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Salazar MG, Hessel S, Julich WD, Lindequist U (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharm Bull 55(3):412–416

    CAS  PubMed  Google Scholar 

  149. Mikolasch A, Wurster M, Lalk M, Witt S, Seefeldt S, Hammer E, Shauer F, Julich WD, Lindequist U (2008) Novel b-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull 56(7):902–907

    CAS  PubMed  Google Scholar 

  150. Mikolasch A, Manda K, Schlüter R, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Hammer E, Jülich WD, Lindequist U (2012) Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics. Biotechnol Appl Bioc 59:295–306

    CAS  Google Scholar 

  151. Yang Z, Pattamana K, Molino BF, Haydar SN, Cao Y, Bois F, Maeng JH, Hemenway MS, Rich JO, Khmelnitsky YL, Friedrich TD, Peace D, Michels PC (2009) Novel Oxidation of cyclosporin A: preparation of cyclosporin methyl vinyl ketone (Cs-MVK). Synlett 18:2935–2938. doi:10.1055/s-0029-1218011

    Google Scholar 

  152. Fontana G, Baldelli E, Riva S, Danieli B (2009) Process for the preparation of bisindole alkaloid derivatives WO 2009153025 A1

  153. Sagui F, Chirivì C, Fontana G, Nicotra S, Passarella D, Riva S, Danieli B (2009) Laccase-catalyzed coupling of catharanthine and vindoline: an efficient approach to the bis indole alkaloid anhydrovinblastine. Tetrahedron 65:312–317

    CAS  Google Scholar 

  154. Herter S, Michalik D, Mikolasch A, Schmidt M, Wohlgemuth R, Bornscheuer, Schauer F (2013) Laccase-mediated synthesis of 2-methoxy-3-methyl-5-(alkylamino)-and 3-methyl-2,5-bis(alkylamino)-[1,4]-benzoquinones. J Mol Catal B Enzym 90:91–97

    CAS  Google Scholar 

  155. Wellington KW, Steenkamp P, Brady D (2010) Diamination by N-coupling using a commercial laccase. Bioorgan Med Chem 18(4):1406–1414

    CAS  Google Scholar 

  156. Wellington KW, Kolesnikova NI (2012) A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorgan Med Chem 20(14):4472–4481

    CAS  Google Scholar 

  157. Ravikumar G, Gimathi DG, Kalaiselvi M, Devaki K, Uma C (2013) Antioxidant property and anti-proliferative activity of recombinant laccase from Hypsizygus ulmarius against breast cancer cell line (MCF7). Int J Res Pharm Biomed Sci 4:1148–1152

    Google Scholar 

  158. Zhang GQ, Tian T, Liu YP, Wang HX, Chen QJ (2011) A laccase with anti-proliferative activity against tumor cells from a white root fungus Abortiporus biennis. Process Biochem 46:2336–2340

    CAS  Google Scholar 

  159. Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB (2011) A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine 18:374–379

    CAS  PubMed  Google Scholar 

  160. Othman AM, Elshafei AM, Hassan MM, Haroun AM, Elsayed MA, Farrag AA (2014) Purification, biochemical characterization and applications of Pleurotus ostreatus ARC 280 laccase. Br Microbiol Res J 4(12):1418–1439

    CAS  Google Scholar 

  161. Wong JH, Ng TB, Jiang Y, Liu F, Sze SC, Zhang KY (2010) Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Peptide Lett 17(8):1040–1047

    CAS  Google Scholar 

  162. Wang HX, Ng TB (2004) Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Trichoderma gigantum. Biochem Bioph Res Co 315:450–454

    CAS  Google Scholar 

  163. Zhang GQ, Chen QJ, Wang HX, Ng TB (2013) A laccase with inhibitory activity against HIV-1 reverse transcriptase from mycorrhizal fungus Lepiota ventrisospora. J Mol Catal B Enzym 85–86:31–36

    Google Scholar 

  164. Sun J, Wang H, Ng TB (2011) Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom). Indian J Biochem Bio 48:88–94

    CAS  Google Scholar 

  165. Sun J, Chen QJ, Cao QQ, Wu YY, Xu LJ, Zhu MJ, Ng TB, Wang HX, Zhang GQ (2012) A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces. J Biomed Biotechnol. doi:10.1155/2012/736472

    Google Scholar 

  166. Wu X, Huang C, Chen Q, Wang H, Zhang J (2014) A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed Chromatogr 28(4):548–553

    CAS  PubMed  Google Scholar 

  167. Zhao S, Rong CB, Kong C, Liu Y, Xu F, Miao DJ, Wang SX, Wang HX, Zhang GQ (2014) A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus. J Biomed Biotechnol. doi:10.1155/2014/417461

    Google Scholar 

  168. Xu L, Wang HX, Ng T (2012) A laccase with HIV-1 reverse transcriptase inhibitor activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. J Biomed Biotechnol. doi:10.1155/2012/536725

    Google Scholar 

  169. Zou YJ, Wang HX, Ng TB, Huang CY, Zhang JX (2012) Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol 50(1):72–78

    CAS  PubMed  Google Scholar 

  170. Harris ZL, Davis-Kaplan SR, Gitlin JD, Kaplan J (2004) A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemia. Blood 103:4672–4673

    CAS  PubMed  Google Scholar 

  171. Kulys J, Bratkovskaja I, Vidziunaite R (2005) Laccase-catalysed iodide oxidation in presence of methyl syringate. Biotechnol Bioeng 92(1):124–128

    CAS  PubMed  Google Scholar 

  172. Xu F (1998) Method of producing iodine by use of a copper containing oxidase enzyme. US 5766896 A

  173. Ihssen J, Schubert M, Thony-Meyer L, Richter M (2013) Laccase Catalyzed Synthesis of Iodonated Phenolic Compounds with Antifungal Activity. PLoS One 9(3):e89924. doi:10.1371/journal.pone.0089924

    Google Scholar 

  174. Christensen BE, Danielsen S, Oestergaard LH (2007) Methods and compositions for killing spores. WO 2006094975 A3

  175. Eggert C (1997) Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol Res 152:315–318

    CAS  PubMed  Google Scholar 

  176. Grover N, Borkar IV, Dinu CZ, Kane RS, Dordick JS (2012) Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enzyme Microb Tech 50:271–279

    CAS  Google Scholar 

  177. Chen SC, Chen CH, Chern CL, Hsu LS, Huang YC, Chung KT, Chye SM (2006) p-Phenylenediamine induces p53-mediated apoptosis in Mardin-Darby canine kidney cells. Toxicol In Vitro 20:801–807

    CAS  PubMed  Google Scholar 

  178. Huang YC, Hung WC, Kang WY, Chen WT, Chai CY (2007) p-Phenylenediamine induced DNA damage in SV-40 immortalized human uroepithelial cells and expression of mutant p53 and COX-2 proteins. Toxicol Lett 170:116–123

    CAS  PubMed  Google Scholar 

  179. Araujo R, Fernandes M, Cavaco-Paulo A, Gomes A (2011) Biology of human hair: know your hair to control it. Adv Biochem Eng Biot 13:121–143

    Google Scholar 

  180. Takada K, Nakamura A, Matsuo N, Inoue A, Someya K, Shimogaki H (2003) Influence of oxidative and/or reductive treatment on human hair (I): analysis of hair-damage after oxidative and/or reductive treatment. J Oleo Sci 52:541–548

    CAS  Google Scholar 

  181. Fu J, Nyanhongo GS, Gubitz GM, Cavaco Paulo A, Kim S (2012) Enzymatic colouration with laccase and peroxidases: recent progress. Biocatal Biotransfor 30(1):125–140

    CAS  Google Scholar 

  182. Lavanya C, Dhankar R, Chhikara S, Sheoran S (2014) Degradation of toxic dyes: a review. Int J Curr Microbiol App Sci 3(6):189–199

    CAS  Google Scholar 

  183. Salame TM, Yarden O, Hadar Y (2010) Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 3:93–106

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Jeon JR, Kim EJ, Murugesan K, Park HK, Kim YM, Kwon JH, Kim WG, Lee JY, Chang YS (2010) Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: enzymatic colourations driven by homo- or hetero-polymer synthesis. Microb Biotechnol 3:324–335

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Otsuka Saito K, Ikeda R, Endo K, Tsujino Y, Takagi M, Tamiya E (2012) Isolation of a novel alkaline-induced laccase from Flammulina velutipes and its application for hair coloring. J Biosci Bioeng 113(5):575–579

    PubMed  Google Scholar 

  186. Chen CY, Huang YC, Wei CM, Meng M, Liu WH, Yang CH (2013) Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express 3:49

    PubMed Central  PubMed  Google Scholar 

  187. Fang Z, Zhou P, Chang F, Yin Q, Fang W, Yuan J, Zhang X, Xiao Y (2014) Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One 9(7):e102423. doi:10.1371/journal.pone.0102423

    PubMed Central  PubMed  Google Scholar 

  188. Golz-Berner K, Walzel B, Zastrow L, Doucet O (2004) Cosmetic or dermatological preparation with skin-lightening proteins. WO2004017931

  189. Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2(1):10–24

    CAS  PubMed  Google Scholar 

  190. Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis:purification and characterization of an intracellular laccase from Lentinula edodes fruit body. Microbiology 149:2455–2462

    CAS  PubMed  Google Scholar 

  191. Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4:4

    Google Scholar 

  192. Takase T, Narise A, Sakurai K (2011) Deodorant composition. WO2011105042 A1

  193. Brinch DS, Pederson PB (2002) Toxicological studies on laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regul Toxicol Pharm 35(3):296–307

    CAS  Google Scholar 

  194. Mano N, Durand F (2013) Laccase of Podospora anserina and uses of same. WO2013175399 A1

  195. Bhogal RK, Casey J, Ganguli S, Hunter KJ, Koek JH, Redfern SP (2013) Hair colouring composition. WO2013189966 A2

  196. Doucet O, Golz-Berner K, Walzel B, Zastrow L (2004) Cosmetic or dermatological preparation with skin-lightening proteins. WO 2004017931:A1

    Google Scholar 

  197. Koike K (2002). Multiple agent type hair dye. JP2002255764

  198. Lang G, Cotteret J (2002) Ready to use hair dye containing oxidation coloring agent, cationic polymers and enzyme; hydrogen peroxide free; homogeneous, intense; nondegrading or decolouring of keratinous fibers. US 6471730 B1

  199. Lang G, Cotteret J (2004) Composition for the oxidation dyeing of keratinous fibres containing a laccase and dyeing method using this composition. US2004255401 A1

  200. Nakajima M, Fujita H, Kikuchi Y, Kobayashi I (2002) Cosmetic mixture for the oxidation tinting of keratin fibres, containing in a support material suitable for tinting keratin fibres (a) at least one laccase-type enzyme; (b) at least one polymer thickener selected from polymers. US 20020043731 A1

  201. Onuki T, Nogucji M, Mitamura J (2000) Oxidative hair dye com-position containing laccase. WO0037030

  202. Pereira R, Burgaud H (2005) Producing tetraazapentamethine compounds comprises reacting an azine compound with an oxidizing agent, useful for dyeing keratinic fibers, e.g. hair. FR2863487 A1

  203. PLoS G (2005) Oxidation dyeing method using N-acetyclysteine as a reducing agent and laccase as an oxidising agent. US 6840964 B1

  204. PLoS G (2001) Composition for oxidative dyeing of keratinous fibres and dyeing process using same. EP1138318 A2

  205. Pruche F, Saint LP, Bernards B (2000) Hydroxystilbene compounds of formula (I) used as components in oxidation dye systems especially for dyeing hair. EP1013260

  206. Shichiri S, Morita K, Koike K (2003) Hair cosmetic. JP2003055175 A2

  207. Riva S (2006) Laccases blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  PubMed  Google Scholar 

  208. Sorensen NH (2001) Method for dyeing dry hair. WO2001068042 A1

  209. Tsuji K, Yoshino T, Asai Y (2002) Composition for bleaching melamine. JP2002012535 A2

Download references

Acknowledgments

This work was supported by grants from the European project “Optimized oxidoreductases for medium and large scale industrial biotransformations, INDOX” (KBBE-2013-7-613549) and from the Italian MIUR (Ministero dell’Università e della Ricerca Scientifica Progetti di Rilevante Interesse Nazionale) PRIN 2009STNWX3. Cinzia Pezzella is recipient of a fellowship funded by POR Campania FSE 2007/2013 “Campania Research in Experimental Medicine, Project CREME” (CUP B25B09000050007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Pezzella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezzella, C., Guarino, L. & Piscitelli, A. How to enjoy laccases. Cell. Mol. Life Sci. 72, 923–940 (2015). https://doi.org/10.1007/s00018-014-1823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1823-9

Keywords

Navigation