Skip to main content
Log in

Comparison of two different media for maturation rate of neural progenitor cells to neuronal and glial cells emphasizing on expression of neurotrophins and their respective receptors

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neural cells derived from embryonic stem cells (ESCs) have potential usefulness for the treatment of neurodegenerative disorders. Modulation of intrinsic growth factors expression such as neurotrophins and their respective receptors by these cells is necessary to obtain functional neural cells for transplantation. In present study, we compared neural differentiation potential of two different media, NB + 5%ES-FBS + N2B27 and Ko-DMEM + 5%ES-FBS for conversion of mESC derived neural progenitors (NPs) into mature neural cells with emphasis on effect of the these two media on neurotrophins and their respective receptors expression. Immunofluorescence staining, RT-qPCR and western blot analysis showed that the expression of neuronal specific markers, MAP2 and Tuj-1, in NB + 5%ES-FBS + N2B27 medium was significantly higher than the other medium. Western blot assay revealed that the expression of BDNF and NGF increased significantly in mature neural cells obtained from NB + 5%ES-FBS + N2B27 medium but decreased in neural cells from Ko-DMEM + 5%ES-FBS medium compared to mESCs. TrkB protein was not detectable in mESCs but its expression increased in neural cells obtained from both media although its expression in NB + 5%ES-FBS + N2B27 medium was significantly higher than the other medium. In contrast to TrkB, p75NTR protein was detectable in mESCs and is remained constant in neural cells cultured in NB + 5%ES-FBS + N2B27 medium but decreased significantly in the other medium. In conclusion, our results indicated that NB + 5%ES-FBS + N2B27 medium promoted neural differentiation process of mESCs and caused enhancement of neurotrophins protein expression in addition to their cognate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Two-way analysis of variance

BDNF:

Brain-derived neurotrophic factor

bHLH:

Basic helix–loop–helix

BSA:

Bovine serum albumin

CNS:

Central nervous system

CTCF:

Corrected total cell fluorescence

DAPI:

4,6-Diamidino-2-phenylindole

DMEM/F12:

Dulbecco’s modified Eagle’s medium/Hams F12 medium

EB:

Embryoid body

ECL:

Enhanced chemiluminescence

ERK:

Extracellular signal-regulated kinase

ESC:

Embryonic stem cell

ES-FBS:

Embryonic stem cell qualified fetal bovine serum

FITC:

Fluorescein isothiocyanate

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

HRP:

Horse radish peroxidase

JNK:

Jun N-terminal kinase

Ko-DMEM:

Knock-out DMEM

LIF:

Leukemia inhibitory factor

MAP2:

Microtubule associated protein 2

mESC:

Mouse embryonic stem cell

miRNA:

MicroRNAs

NB:

Neurobasal

NC:

Neural cell

NGF:

Nerve growth factor

NP:

Neural progenitor

NSC:

Neural stem cell

NT:

Neurotrophin

NT-3:

Neurotrophin-3

NT-4:

Neurotrophin-4

p75NTR:

p75 neurotrophin receptor

PBS:

Phosphate buffered saline

PI3:

Phosphatidylinositol-3-kinase

PVDF:

Polyvinylidene difluoride

RA:

Retinoic acid

RT:

Room temprature

RT-qPCR:

Real-time quantitative polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEM:

Standard error of the mean

TRI:

Total RNA isolation

Trk:

Tropomyosin related kinase

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  3. Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8(17):971–972

    Article  CAS  Google Scholar 

  4. Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48(8):513–523

    Article  CAS  Google Scholar 

  5. Bartkowska K, Turlejski K, Djavadian RL (2010) Neurotrophins and their receptors in early development of the mammalian nervous system. Acta Neurobiol Exp (Wars) 70(4):454–467

    Google Scholar 

  6. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299

    Article  CAS  Google Scholar 

  7. Malva JO, Cunha RA, Oliveira CR, Rego AC (2007) Interaction between neurons and glia in aging and disease. Springer, New York

    Book  Google Scholar 

  8. Vega JA, García-Suárez O, Hannestad J, Pérez-Pérez M, Germanà A (2003) Neurotrophins and the immune system. J Anat 203(1):1–19

    Article  CAS  Google Scholar 

  9. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B 361(1473):1545–1564

    Article  CAS  Google Scholar 

  10. Schor NF (2005) The p75 neurotrophin receptor in human development and disease. Prog Neurobiol 77(3):201–214

    Article  CAS  Google Scholar 

  11. Casaccia-Bonnefil P, Gu C, Khursigara G, Chao MV (1999) p75 neurotrophin receptor as a modulator of survival and death decisions. Microsc Res Tech 45(4–5):217–224

    Article  CAS  Google Scholar 

  12. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391

    Article  CAS  Google Scholar 

  13. Dobrowsky RT, Jenkins GM, Hannun YA (1995) Neurotrophins induce sphingomyelin hydrolysis modulation by co-expression of p75NTR with Trk receptors. J Biol Chem 270(38):22135–22142

    Article  CAS  Google Scholar 

  14. Ernfors P, Henschen A, Olson L, Persson H (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2(6):1605–1613

    Article  CAS  Google Scholar 

  15. Koliatsos VE, Crawford TO, Price DL (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res 549(2):297–304

    Article  CAS  Google Scholar 

  16. Hayes RC, Wiley RG, Armstrong DM (1992) Induction of nerve growth factor receptor (p75NGFr) mRNA within hypoglossal motoneurons following axonal injury. Mol Brain Res 15(3–4):291–297

    Article  CAS  Google Scholar 

  17. Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y et al (2003) Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J Neurosci 23(19):7326–7336

    Article  CAS  Google Scholar 

  18. Yaghoobi MM, Mowla SJ (2006) Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 397(1–2):149–154

    Article  CAS  Google Scholar 

  19. Hassani S-N, Totonchi M, Sharifi-Zarchi A, Mollamohammadi S, Pakzad M, Moradi S et al (2014) Inhibition of TGFβ signaling promotes ground state pluripotency. Stem Cell Rev Rep 10(1):16–30

    Article  CAS  Google Scholar 

  20. Ostadsharif M, Ghaedi K, Nasr-Esfahani MH, Mojbafan M, Tanhaie S, Karbalaie K et al (2011) The expression of peroxisomal protein transcripts increased by retinoic acid during neural differentiation. Differentiation 81(2):127–132

    Article  CAS  Google Scholar 

  21. Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L (2004) Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int J Dev Biol 50(7):627–635

    Article  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3(6):1101

    Article  CAS  Google Scholar 

  23. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  25. Joshi R, Thakuri PS, Buchanan JC, Li J, Tavana H (2018) Microprinted stem cell niches reveal compounding effect of colony size on stromal cells-mediated neural differentiation. Adv Healthcare Mater 7(5):1700832

    Article  Google Scholar 

  26. Bain G, Ray WJ, Yao M, Gottlieb DI (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 223(3):691–694

    Article  CAS  Google Scholar 

  27. Glaser T, Brüstle O (2005) Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci 28(8):397–400

    Article  CAS  Google Scholar 

  28. Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165(3–4):190–202

    Article  CAS  Google Scholar 

  29. Xu J, Wang H, Liang T, Cai X, Rao X, Huang Z et al (2012) Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture. Mol Biol Rep 39(2):789–795

    Article  CAS  Google Scholar 

  30. Okada Y, Shimazaki T, Sobue G, Okano H (2004) Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 275(1):124–142

    Article  CAS  Google Scholar 

  31. Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D et al (2009) Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS ONE 4(7):e6286

    Article  Google Scholar 

  32. Baier PC, Schindehütte J, Thinyane K, Flügge G, Fuchs E, Mansouri A et al (2004) Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells 22(3):396–404

    Article  CAS  Google Scholar 

  33. Tripathy D, Haobam R, Nair R, Mohanakumar KP (2013) Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats. PLoS ONE 8(9):e72501

    Article  CAS  Google Scholar 

  34. Ramamurthy P (2012) Mouse embryonic stem cells differentiated into neuron-like cells or schwann cell-like cells for the development of strategies to ameliorate deafness

  35. Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE et al (2010) Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 18(6):1111–1122

    Article  CAS  Google Scholar 

  36. Tan B-T, Wang L, Li S, Long Z-Y, Wu Y-M, Liu Y (2015) Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro. Int J Clin Exp Pathol 8(7):8129

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Esmaeili M, Ghaedi K, Nejati AS, Nematollahi M, Shiralyian H, Nasr-Esfahani M (2016) Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down. Neuroscience 312:35–47

    Article  CAS  Google Scholar 

  38. Forouzanfar M, Rabiee F, Ghaedi K, Beheshti S, Tanhaei S, Shoaraye Nejati A et al (2015) Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biol Int 39(5):629–637

    Article  CAS  Google Scholar 

  39. Hashemi M-S, Ghaedi K, Salamian A, Karbalaie K, Emadi-Baygi M, Tanhaei S et al (2013) Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience 231:296–304

    Article  CAS  Google Scholar 

  40. Farahabadi SH, Ghaedi K, Zadegan FG, Karbalaie K, Rabiee F, Nematollahi M et al (2015) ERK1/2 is a key regulator of Fndc5 and PGC1α expression during neural differentiation of mESCs. Neuroscience 297:252–261

    Article  Google Scholar 

  41. Seifi T, Ghaedi K, Tanhaei S, Karamali F, Kiani-Esfahani A, Peymani M et al (2014) Identification, cloning, and functional analysis of the TATA-less mouse FNDC5 promoter during neural differentiation. Cell Mol Neurobiol 34(5):715–725

    Article  CAS  Google Scholar 

  42. Ghoochani A, Shabani K, Peymani M, Ghaedi K, Karamali F, Karbalaei K et al (2012) The influence of peroxisome proliferator-activated receptor γ1 during differentiation of mouse embryonic stem cells to neural cells. Differentiation 83(1):60–67

    Article  CAS  Google Scholar 

  43. Brewer GJ, Torricelli JR, Evege EK, Price P (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a newserum-free medium combination. J Neurosci Res 35(5):567–576

    Article  CAS  Google Scholar 

  44. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1994) Neurobasal medium/B27 supplement: a new serum-free medium combination for survival of neurons. Focus 16:6–9

    Google Scholar 

  45. Wachs F-P, Couillard-Despres S, Engelhardt M, Wilhelm D, Ploetz S, Vroemen M et al (2003) High efficacy of clonal growth and expansion of adult neural stem cells. Lab Invest 83(7):949

    Article  Google Scholar 

  46. Zarrinpour V, Hajebrahimi Z, Jafarinia M (2017) Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition. Iran J Basic Med Sci 20(2):178

    PubMed  PubMed Central  Google Scholar 

  47. Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G, Campagnolo L (2009) p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res 315(18):3220–3232

    Article  CAS  Google Scholar 

  48. Proenca CC, Song M, Lee FS (2016) Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J Neurochem 138(3):397–406

    Article  CAS  Google Scholar 

  49. Timmusk T, Belluardo N, Metsis M, Persson H (1993) Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur J Neurosci 5(6):605–613

    Article  CAS  Google Scholar 

  50. Ardelt A, Flaris N, Roth K (1994) Neurotrophin-4 selectively promotes survival of striatal neurons in organotypic slice culture. Brain Res 647(2):340–344

    Article  CAS  Google Scholar 

  51. Arenas E, Åkerud P, Wong V, Boylan C, Person H, Lindsay RM et al (1996) Effects of BDNF and NT-4/5 on striatonigral neuropeptides or nigral GABA neurons in vivo. Eur J Neurosci 8(8):1707–1717

    Article  CAS  Google Scholar 

  52. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14(1):335–347

    Article  CAS  Google Scholar 

  53. Zermeño V, Espindola S, Mendoza E, Hernández-Echeagaray E (2009) Differential expression of neurotrophins in postnatal C57BL/6 mice striatum. Int J Biol Sci 5(2):118

    Article  Google Scholar 

  54. Wirth MJ, Brün A, Grabert J, Patz S, Wahle P (2003) Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130(23):5827–5838

    Article  CAS  Google Scholar 

  55. Patz S, Wahle P (2004) Neurotrophins induce short-term and long-term changes of cortical neurotrophin expression. Eur J Neurosci 20(3):701–708

    Article  Google Scholar 

  56. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4(9):117

    Article  Google Scholar 

  57. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550

    Article  CAS  Google Scholar 

  58. Shi J (2015) Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers. Acta Pharmacol Sin 36(2):149

    Article  CAS  Google Scholar 

  59. Finley MF, Devata S, Huettner JE (1999) BMP-4 inhibits neural differentiation of murine embryonic stem cells. J Neurobiol 40(3):271–287

    Article  CAS  Google Scholar 

  60. Liu F, Xuan A, Chen Y, Zhang J, Xu L, Yan Q et al (2014) Combined effect of nerve growth factor and brain–derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep 10(4):1739–1745

    Article  CAS  Google Scholar 

  61. Ito H, Nakajima A, Nomoto H, Furukawa S (2003) Neurotrophins facilitate neuronal differentiation of cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors Mash1 and Math1. J Neurosci Res 71(5):648–658

    Article  CAS  Google Scholar 

  62. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME et al (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5(4):501–509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank University of Sistan and Baluchestan and Royan Institute for the financial support of this project. The authors are thankful to other members of Royan Institute for their excellent technical assistance and advice.

Author information

Authors and Affiliations

Authors

Contributions

RE experimental design, data collection, data analysis, data interpretation and manuscript writing. DMKT experimental design, financial support, data analysis, data interpretation, and final approval of the manuscript. KG experimental design, data analysis, data interpretation, manuscript writing, and final approval of the manuscript. MHNE experimental design, financial support, data analysis, data interpretation, and final approval of manuscript.

Corresponding authors

Correspondence to Dor Mohammad Kordi-Tamandani, Kamran Ghaedi or Mohammad Hossein Nasr-Esfahani.

Ethics declarations

Conflict of interest

The authors indicate no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, R., Kordi-Tamandani, D.M., Ghaedi, K. et al. Comparison of two different media for maturation rate of neural progenitor cells to neuronal and glial cells emphasizing on expression of neurotrophins and their respective receptors. Mol Biol Rep 45, 2377–2391 (2018). https://doi.org/10.1007/s11033-018-4404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4404-4

Keywords

Navigation