Skip to main content
Log in

Inhibition of TGFβ Signaling Promotes Ground State Pluripotency

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Author Correction to this article was published on 06 October 2021

This article has been updated

Abstract

Embryonic stem (ES) cells are considered to exist in a ground state if shielded from differentiation triggers. Here we show that FGF4 and TGFβ signaling pathway inhibitors, designated R2i, not only provide the ground state pluripotency in production and maintenance of naïve ES cells from blastocysts of different mouse strains, but also maintain ES cells with higher genomic integrity following long-term cultivation compared with the chemical inhibition of the FGF4 and GSK3 pathways, known as 2i. Global transcriptome analysis of the ES cells highlights augmented BMP4 signaling pathway. The crucial role of the BMP4 pathway in maintaining the R2i ground state pluripotency is demonstrated by BMP4 receptor suppression, resulting in differentiation and cell death. In conclusion, by inhibiting TGFβ and FGF signaling pathways, we introduce a novel defined approach to efficiently establish the ground state pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Smith, A. G., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336(6200), 688–690.

    Article  CAS  PubMed  Google Scholar 

  4. Ying, Q. L., et al. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuda, T., et al. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO Journal, 18(15), 4261–4269.

    Article  CAS  PubMed  Google Scholar 

  6. Niwa, H., et al. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development, 12(13), 2048–2060.

    Article  CAS  Google Scholar 

  7. Wray, J., Kalkan, T., & Smith, A. G. (2010). The ground state of pluripotency. Biochemical Society Transactions, 38(4), 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  8. Ying, Q. L., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523.

    Article  CAS  PubMed  Google Scholar 

  9. Martello, G., et al. (2012). Esrrb is a pivotal target of the gsk3/tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell, 11(4), 491–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Valvezan, A. J., et al. (2012). Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. Journal of Biological Chemistry, 287(6), 3823–3832.

    Article  CAS  PubMed  Google Scholar 

  11. Acevedo, N., et al. (2007). Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Molecular Reproduction and Development, 74(2), 178–188.

    Article  CAS  PubMed  Google Scholar 

  12. Tighe, A., et al. (2007). GSK-3 inhibitors induce chromosome instability. BMC Cell Biology, 8, 34.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hassani, S. N., et al. (2012). Simultaneous suppression of TGF-beta and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Reviews, 8(2), 472–481.

    Article  CAS  PubMed  Google Scholar 

  14. Baharvand, H., & Hassani, S. N. (2013). A new chemical approach to the efficient generation of mouse embryonic stem cells. Methods in Molecular Biology, 997, 13–22.

    Article  CAS  PubMed  Google Scholar 

  15. Ritchie, M. E., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics, 23(20), 2700–2707.

    Article  CAS  PubMed  Google Scholar 

  16. Smyth, G., Thorne, N., & Wettenhall J., LIMMA: Linear Models for Microarray Data User’s Guide, 2003. URL http://www.bioconductor.org.

  17. R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

  18. Baharvand, H., & Matthaei, K. I. (2004). Culture condition difference for establishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains. In Vitro Cellular & Developmental Biology. Animal, 40(3–4), 76–81.

    Article  CAS  Google Scholar 

  19. Kress, C., et al. (1998). Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation. Mammalian Genome, 9(12), 998–1001.

    Article  CAS  PubMed  Google Scholar 

  20. Blair, K., Wray, J., & Smith, A. (2011). The liberation of embryonic stem cells. PLoS Genetics, 7(4), e1002019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marks, H., et al. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3), 590–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hamada, H., et al. (2002). Establishment of vertebrate left-right asymmetry. Nature Reviews Genetics, 3(2), 103–113.

    Article  CAS  PubMed  Google Scholar 

  23. Rebuzzini, P., et al. (2008). Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenetic and Genome Research, 121(1), 18–24.

    Article  CAS  PubMed  Google Scholar 

  24. Wong, E. S., et al. (2010). A simple procedure for the efficient derivation of mouse ES cells. Methods in Enzymology, 476, 265–283.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, R. H., et al. (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2), 196–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fei, T., et al. (2010). Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Research, 20(12), 1306–1318.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa, K., et al. (2007). Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. Journal of Cell Science, 120(Pt 1), 55–65.

    CAS  PubMed  Google Scholar 

  28. Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19(1), 103–115.

    Article  CAS  PubMed  Google Scholar 

  29. Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390(6659), 465–471.

    Article  CAS  PubMed  Google Scholar 

  30. Akhurst, R. J., et al. (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development, 108(4), 645–656.

    CAS  PubMed  Google Scholar 

  31. Zwijsen, A., et al. (1999). Ectopic expression of the transforming growth factor beta type II receptor disrupts mesoderm organisation during mouse gastrulation. Developmental Dynamics, 214(2), 141–151.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, K. L., et al. (2011). Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genetics, 7(6), e1002130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mullen, A. C., et al. (2011). Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell, 147(3), 565–576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. James, D., et al. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6), 1273–1282.

    Article  CAS  PubMed  Google Scholar 

  35. Ichida, J. K., et al. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5), 491–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19(20), 1718–1723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, Z., et al. (2012). BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell, 10(2), 171–182.

    Article  CAS  PubMed  Google Scholar 

  38. Loh, K. M., & Lim, B. (2011). A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell, 8(4), 363–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Department of Stem Cells and Developmental Biology labs for their helpful suggestions and critical reading of the manuscript. We thank Behrouz Asgari for chimera formation and germline transmission. This study was funded by grants provided from Royan Institute and Iranian Council of Stem Cell Technology and the Iran National Science Foundation (INSF).

Author Contributions

S. H., M. T., H. R. S. and H. B. designed all experiments and wrote the manuscript. S. H. and S. M. performed cell culture. M. T. and A. S. performed real-time PCR analysis. A. F. and M. P. operated in vivo experiments. N. M. and H. G. performed karyotype analysis. S. M. and G. S. H. performed western blot analysis. M. T., A. S., M. S., B. G. and M. J. A. designed and interpreted microarray analysis. G. H. S., S. M. and D. S. contributed to the overall design and writing of the article.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Additional information

Seyedeh-Nafiseh Hassani and Mehdi Totonchi contributed equally in this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 9.11 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassani, SN., Totonchi, M., Sharifi-Zarchi, A. et al. Inhibition of TGFβ Signaling Promotes Ground State Pluripotency. Stem Cell Rev and Rep 10, 16–30 (2014). https://doi.org/10.1007/s12015-013-9473-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9473-0

Keywords

Navigation