Skip to main content

Advertisement

Log in

Copy number profiling of Oncotype DX genes reveals association with survival of breast cancer patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Copy number variations (CNVs) are key contributors in breast cancer initiation and progression. However, to date, no CNV-based gene signature is developed for breast cancer. 21-gene Oncotype DX, a clinically validated signature, was identified using only RNA expression data in breast cancer patients. In this study, we evaluated whether CNVs of Oncotype DX genes can be used to predict the prognosis of breast cancer patients. Transcriptomic data of 547 and genomic data of 816 of breast cancer patients were downloaded from The Cancer Genome Atlas database. To establish the prognostic relevance between the CNVs of Oncotype DX genes and clinicopathological features, statistical analysis including Pearson Correlation, Fisher-exact, Chi square, Kaplan–Meier survival and Cox regression analyses were performed. 86% genes showed positive CNV-expression correlation. CNVs in 52% and 47.6% genes showed association with ER+ and PR+ status, respectively. 71% of the genes (including ERBB2, CTSV, CD68, GRB7, MKI67, MMP1, PGR, RPLP0, TFRC, BAG1, BCL2, BIRC5, FLNB, GSTM1 and SCUBE2) showed association with poor overall survival. 14% of the genes (including CTSV, RPLP0 and BIRC5) genes showed association with disease free survival. Cox regression analysis revealed ESR1, metastasis and node stage as independent prognostic factors for overall survival of breast cancer patients. The results suggested that CNV-based assay of Oncotype DX genes can be used to predict the survival of breast cancer patients. In future, identifying new gene signatures for better breast cancer prognosis using CNV level information will be worth investigating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2:133–140. https://doi.org/10.1016/S1470-2045(00)00254-0

    Article  CAS  PubMed  Google Scholar 

  2. Oakman C, Bessi S, Zafarana E et al (2009) Recent advances in systemic therapy. New diagnostics and biological predictors of outcome in early breast cancer. Breast Cancer Res 11:205. https://doi.org/10.1186/bcr2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kheirandish S, Homaee F (2015) Ki-67 protein: a proliferation index in breast cancer. Rev Clin Med 2:205–208. https://doi.org/10.17463/RCM.2015.04.010

    Article  Google Scholar 

  4. Bianchini G, Pusztai L, Karn T et al (2013) Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers. Breast Cancer Res 15:R86. https://doi.org/10.1186/bcr3481

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gray RG, Quirke P, Handley K et al (2011) Validation study of a quantitative multigene reverse transcriptase–polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol 29:4611–4619. https://doi.org/10.1200/JCO.2010.32.8732

    Article  PubMed  Google Scholar 

  6. Howell A, Anderson AS, Clarke RB et al (2014) Risk determination and prevention of breast cancer. Breast Cancer Res 16:446. https://doi.org/10.1186/s13058-014-0446-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hannemann J, Velds A, Halfwerk JB et al (2006) Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8:R61. https://doi.org/10.1186/bcr1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urruticoechea A, Smith IE, Dowsett M (2005) Proliferation marker Ki-67 in early breast cancer. J Clin Oncol 23:7212–7220. https://doi.org/10.1200/JCO.2005.07.501

    Article  CAS  PubMed  Google Scholar 

  9. Kosari F, Cheville JC, Ida CM et al (2012) Shared gene expression alterations in prostate cancer and histologically benign prostate from patients with prostate cancer. Am J Pathol 181:34–42. https://doi.org/10.1016/j.ajpath.2012.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 17:R245–R262. https://doi.org/10.1677/ERC-10-0136

    Article  CAS  PubMed  Google Scholar 

  11. Arranz EE, Vara JÁF, Gámez-Pozo A, Zamora P (2012) Gene signatures in breast cancer: current and future uses. Transl Oncol 5:398–403

    Article  Google Scholar 

  12. Győrffy B, Hatzis C, Sanft T et al (2015) Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 17:11. https://doi.org/10.1186/s13058-015-0514-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perreard L, Fan C, Quackenbush JF et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8:R23. https://doi.org/10.1186/bcr1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fatima A, Tariq F, Malik MFA et al (2017) Copy number profiling of MammaPrint™ genes reveals association with the prognosis of breast cancer patients. J Breast Cancer 20:246–253. https://doi.org/10.4048/jbc.2017.20.3.246

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alvarado MD, Prasad C, Rothney M et al (2015) A prospective comparison of the 21-gene recurrence score and the PAM50-based prosigna in estrogen receptor-positive early-stage breast cancer. Adv Ther 32:1237–1247. https://doi.org/10.1007/s12325-015-0269-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cope LM, Irizarry RA, Jaffee HA et al (2004) A benchmark for Affymetrix GeneChip expression measures. Bioinformatics 20:323–331. https://doi.org/10.1093/bioinformatics/btg410

    Article  CAS  PubMed  Google Scholar 

  17. Hester SD, Reid L, Nowak N et al (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Tech JBT 20:135–151

    PubMed  Google Scholar 

  18. Mermel CH, Schumacher SE, Hill B et al (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41. https://doi.org/10.1186/gb-2011-12-4-r41

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schaschl H, Aitman TJ, Vyse TJ (2009) Copy number variation in the human genome and its implication in autoimmunity. Clin Amp Exp Immunol 156:12–16. https://doi.org/10.1111/j.1365-2249.2008.03865.x

    Article  CAS  Google Scholar 

  20. Turner BC, Krajewski S, Krajewska M et al (2001) BAG-1: a novel biomarker predicting long-term survival in early-stage breast cancer. J Clin Oncol 19:992–1000. https://doi.org/10.1200/JCO.2001.19.4.992

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Bismar TA, Su J et al (2010) Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207:2421–2437. https://doi.org/10.1084/jem.20100433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song Z, Shao C, Feng C et al (2016) Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: a meta-analysis. Ther Clin Risk Manag 12:763–769. https://doi.org/10.2147/TCRM.S104339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu C, Hequn C, Longfei L et al (2017) GSTM1 and GSTT1 polymorphisms are associated with increased bladder cancer risk: evidence from updated meta-analysis. Oncotarget 8:3246–3258. https://doi.org/10.18632/oncotarget.13702

    Article  PubMed  Google Scholar 

  24. Tian S, Roepman P, van’t Veer LJ et al (2010) Biological functions of the genes in the Mammaprint breast Cancer profile reflect the hallmarks of cancer. Biomark Insights 5:129–138. https://doi.org/10.4137/BMI.S6184

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rumney RMH, Coffelt SB, Neale TA et al (2017) PyMT-Maclow: a novel, inducible, murine model for determining the role of CD68 positive cells in breast tumor development. PloS One 12:e0188591. https://doi.org/10.1371/journal.pone.0188591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sudhan DR, Rabaglino MB, Wood CE, Siemann DW (2016) Cathepsin l in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clin Exp Metastasis 33:461–473. https://doi.org/10.1007/s10585-016-9790-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nadler Y, González AM, Camp RL et al (2010) Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann Oncol Off J Eur Soc Med Oncol 21:466–473. https://doi.org/10.1093/annonc/mdp346

    Article  CAS  Google Scholar 

  28. Thakur SS, Li H, Chan AMY et al (2018) The use of automated Ki67 analysis to predict Oncotype DX risk-of-recurrence categories in early-stage breast cancer. PLoS ONE 13:e0188983. https://doi.org/10.1371/journal.pone.0188983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Ye C, Lu D et al (2017) Matrix metalloproteinase-1 expression in breast carcinoma: a marker for unfavorable prognosis. Oncotarget 8:91379–91390. https://doi.org/10.18632/oncotarget.20557

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yokoi A, Yoshioka Y, Yamamoto Y et al (2017) Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun 8:14470. https://doi.org/10.1038/ncomms14470

    Article  PubMed  PubMed Central  Google Scholar 

  31. McNeill RE, Miller N, Kerin MJ (2007) Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer. BMC Mol Biol 8:107. https://doi.org/10.1186/1471-2199-8-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugyo A, Tsuji AB, Sudo H et al (2017) Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice. Oncol Rep 37:1529–1536. https://doi.org/10.3892/or.2017.5412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank all the authors for actively participating in the project. This project is supported by Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Haq.

Ethics declarations

Conflict of interest

All authors state that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 136 KB)

Supplementary material 2 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Malik, M.F.A., Saeed, M. et al. Copy number profiling of Oncotype DX genes reveals association with survival of breast cancer patients. Mol Biol Rep 45, 2185–2192 (2018). https://doi.org/10.1007/s11033-018-4379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4379-1

Keywords

Navigation