Skip to main content
Log in

Levels and fluxes in enzymatic antioxidants following gamma irradiation are inadequate to confer radiation resistance in Drosophila melanogaster

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) causes biological effects either by directly damaging the molecules or by generating free radicals. Antioxidant mechanisms are believed to be involved in neutralising free radicals. Levels of antioxidants therefore assume significance in determining the extent of radiation damage. The fruit fly Drosophila melanogaster (D. melanogaster) exhibits remarkable IR tolerance compared to mammals. Present study addresses the questions (1) Whether levels of antioxidants are high in radio-tolerant fruit fly D. melanogaster compared to mammals? (2) Does the antioxidant activity enhance adequately enough post-irradiation? We analysed enzymatic antioxidant profiles and their fluxes prior to and 60 min post-irradiation (50 Gy). Enzymatic antioxidants were analysed in all the developmental stages of D. melanogaster as the fruit fly shows dramatic changes in radiation resistance during development. Activity of superoxide dismutase (SOD) in Drosophila (pre-irradiation) was comparable to that of mammals. Catalase activity was lower than mammals while glutathione peroxidise (DmGPx) activity was significantly higher. Following irradiation SOD showed changes ranging from 1.40 to 1.62 folds only in larval stages. Catalase activity showed positive change of 1.25 folds only in adults. Activity of DmGPx was largely unaffected. Early pupae showed increased (3.67 fold) glutathione S-transferase activity post-irradiation. Non-enzymatic antioxidants such as total antioxidant capacity showed significant whereas reduced glutathione showed insignificant flux. In conclusion, the levels of enzymatic antioxidants in Drosophila compared to IR sensitive mammals and post-irradiation fluxes in antioxidant enzyme levels appear inadequate to explicate the dramatic radiation resistance observed in Drosophila. The observations are in agreement with the recent findings refuting the role of enzymatic antioxidants in radiation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

D. melanogaster :

Drosophila melanogaster

ROS:

Reactive oxygen species

Gy:

Gray

FI:

First instar larvae

SI:

Second instar larvae

FTI:

Feeding third instar larvae

NFTI:

Non-feeding third instar larvae

LD50 :

Lethal dose to kill 50% population

TAC:

Total antioxidant capacity

SOD:

Superoxide dismutase

DmGPx:

Glutathione peroxidase

GSH:

Reduced glutathione

GST:

Glutathione S-transferase

SEM:

Standard error of mean

References

  1. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75(1):133–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5(7):1–11

    Article  Google Scholar 

  3. Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29(2):187–197

    Article  CAS  PubMed  Google Scholar 

  4. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33

    Article  CAS  PubMed  Google Scholar 

  5. Weiss JF, Landauer MR (2003) Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189:1–20

    Article  CAS  PubMed  Google Scholar 

  6. Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7(5):757–766

    Article  PubMed  Google Scholar 

  7. Sørensen JG, Nielsen MM, Loeschcke V (2007) Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J Evol Biol 20(4):1624–1636

    Article  PubMed  Google Scholar 

  8. Paithankar JG, Deeksha K, Patil RK (2017) Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster. Int J Radiat Biol 93(4):440–448

    Article  CAS  PubMed  Google Scholar 

  9. Sharma V, Kohli S, Brahmachari V (2017) Correlation between desiccation stress response and epigenetic modifications of genes in Drosophila melanogaster: An example of environment-epigenome interaction. Biochim Biophys Acta: Gene Regul Mech 1860(10):1058–1068

    Article  CAS  Google Scholar 

  10. Daly M (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7(3):237–245

    Article  CAS  PubMed  Google Scholar 

  11. Gérard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genom 266(1):72–78

    Article  Google Scholar 

  12. Daly MJ, Gaidamakova EK, Matrosova VY et al (2004) Accumulation of Mn (II) in Deinicoccus radiodurans facilitates gamma-radiation resistance. Science 306(5698):1025–1028

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto T, Horikawa DD, Saito Y et al (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7(12808):1–14

    Google Scholar 

  14. Sharma A, Gaidamakova EK, Grichenko O et al (2017) Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance. Proc Natl Acad Sci 114:E9253–E9260

    Article  CAS  PubMed  Google Scholar 

  15. Gupta P, Gayen M, Smith JT et al (2016) MDP: a Deinococcus Mn2+-decapeptide complex protects mice from ionizing radiation. PLoS ONE 11(8):1–22

    Google Scholar 

  16. Harrison FL, Anderson SL (1996) Taxonomic and developmental aspects of radiosensitivity. Proceedings of the symposium: ionizing radiation, The Swedish Radiation Protection Institute (SSI) and The Atomic Energy Control Board (AECB) of Canada, Stockholm, Sweden, May, pp 65–88

  17. Koval TM (1983) Intrinsic resistance to the lethal effects of X-irradiation in insect and arachnid cells. Proc Natl Acad Sci 80(15):4752–4755

    Article  CAS  PubMed  Google Scholar 

  18. Koval TM (1984) Multiphasic survival response of a radioresistant lepidopteran insect cell line. Radiat Res 98:642–648

    Article  CAS  PubMed  Google Scholar 

  19. Cheng IC, How-Jing L, Wang TC (2009) Multiple factors conferring high radioresistance in insect Sf9 cells. Mutagenesis 24(3):259–269

    Article  CAS  PubMed  Google Scholar 

  20. Lee KB, Hwang UK, Lee LK (1968) Exploratory studies on the eradication of the korean pine caterpillar Dendrolimus spectabilis butler by means of radiation. Proceedings of a symposium on the use of isotopes and radiation in entomology. International Atomic Energy Agency, Vienna, pp 273–286

  21. Bakri A, Heather N, Hendrichs J, Ferris A (2005) Fifty years of radiation biology in entomology: lessons learned from IDIDAS. Ann Entomol Soc Am 98(1):1–12

    Article  Google Scholar 

  22. Staveley BE, Phillips JP, Hilliker AJ (1990) Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33:867–872

    Article  CAS  PubMed  Google Scholar 

  23. Hilliker AJ, Duyf B, Evans D, Phillips JP (2015) Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci 89(10):4343–4347

    Article  Google Scholar 

  24. Paithankar JG, Raghu SV, Patil RK (2018) Concomitant changes in radiation resistance and trehalose levels during life stages of Drosophila melanogaster suggest radio-protective function of trehalose. Int J Radiat Biol 94(6):576–589

    Article  CAS  PubMed  Google Scholar 

  25. Sinha A (1972) Calorimetric assay of catalase. Anal Biochem 2(47):389–394

    Article  Google Scholar 

  26. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(73):588–590

    Article  CAS  PubMed  Google Scholar 

  27. Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37(4):679–688

    Article  CAS  PubMed  Google Scholar 

  28. Sharma S, Mohan M, Kumari S, Sorake JS (2009) Evaluation of glutathione in oral squamous cell carcinoma. J Maxillofac Oral Surg 8(3):270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  30. Pouget JP, Mather SJ (2001) General aspects of the cellular response to low- and high-LET radiation. Eur J Nucl Med 28(4):541–561

    Article  CAS  PubMed  Google Scholar 

  31. Schwedhelm E, Maas R, Troost R, Rainer HB (2003) Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. Clin Pharmacokinet 42(5):437–459

    Article  CAS  PubMed  Google Scholar 

  32. Patil S, Somashekarappa H, Patil KR (2012) Radiomodulatory role of rutin and quercetin in swiss albino mice exposed to the whole body gamma radiation. Indian J Nucl Med 27(4):237–242

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suman S, Khan Z, Zarin M, Chandna S, Seth RK (2015) Radioresistant Sf9 insect cells display efficient antioxidant defence against high dose γ-radiation. Int J Radiat Biol 91(9):732–741

    Article  CAS  PubMed  Google Scholar 

  34. Cai P, Hong J, Wang C et al (2018) Effects of Co-60 radiation on the activities of three main antioxidant enzymes in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). J Asia Pac Entomol 21(1):345–351

    Article  Google Scholar 

  35. Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB (2009) Increased level of superoxide dismutase (SOD) activity in larvae of Chironomus ramosus (Diptera: Chironomidae) subjected to ionizing radiation. Comp Biochem Physiol Part C: Toxicol Pharmacol 149(4):500–506

    CAS  Google Scholar 

  36. Bump EA, Martin J (1990) Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther 47:117–136

    Article  CAS  PubMed  Google Scholar 

  37. Russo A, Mitchell JB, Finkelstein E, Degraff WG, Spiro IJ, Gamson J (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103:232–239

    Article  CAS  PubMed  Google Scholar 

  38. Hardmeier R, Hoeger H, Fang-Kircher S, Khoschsorur A, Lubec G (1997) Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc Natl Acad Sci 94(14):7572–7576

    Article  CAS  PubMed  Google Scholar 

  39. Marklund SL, Westman NG, Roos G, Carlsson J (1984) Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiat Res 100(1):115–123

    Article  CAS  PubMed  Google Scholar 

  40. Sun J, Chen Y, Li M, Ge Z (1998) Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 24(4):586–593

    Article  CAS  PubMed  Google Scholar 

  41. Lee HC, Kim DW, Jung KY et al (2004) Increased expression of antioxidant enzyme in radioresistant variant from U251 human glioblastoma cell line. Int J Mol Med 13:883–887

    CAS  PubMed  Google Scholar 

  42. Maral J, Puget K, Michelson AM (1977) Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77(4):1525–1535

    Article  CAS  PubMed  Google Scholar 

  43. Hissin PJ, Hilf R (1976) A flurometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jagdish Gopal Paithankar sincerely thanks University Grants Commission (UGC), India for awarding research fellowship. Authors acknowledge Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University for providing irradiation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamprasad Varija Raghu.

Ethics declarations

Conflict of interest

No potential conflicts of interest are disclosed.

Informed consent

We agree that the information in this study is disclosed.

Research involving animal participants

The research involves use of Drosophila melanogaster flies. The ethical clearance certificate from institutional animal ethics committee is provided.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paithankar, J.G., Raghu, S.V. & Patil, R.K. Levels and fluxes in enzymatic antioxidants following gamma irradiation are inadequate to confer radiation resistance in Drosophila melanogaster. Mol Biol Rep 45, 1175–1186 (2018). https://doi.org/10.1007/s11033-018-4270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4270-0

Keywords

Navigation