Skip to main content
Log in

Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wislet-Gendebien S, Laudet E, Neirinckx V, Rogister B (2012) Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders. J Biomed Biotechnol. 2012:601560

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bergstrom T, Forsberg-Nilsson K (2012) Neural stem cells: brain building blocks and beyond. Ups J Med Sci 117:32–142

    Article  Google Scholar 

  3. Henningson CJ, Stanislaus M, Gewirtz A (2013) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 111:745–753

    Article  Google Scholar 

  4. Edwards RG (2004) Stem cells today: bone marrow stem cells. Reprod Biomed Online 9:541–583

    Article  CAS  PubMed  Google Scholar 

  5. Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM (2003) Potential of embryonic and adult stem cells in vitro. Biol Chem 384:1391–1409

    Article  CAS  PubMed  Google Scholar 

  6. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  7. Masuda H, Matsuzaki Y, Hiratus E, Ono M, Nagashima T, Kajitani T et al (2010) Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One 5:e10387

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodrigues MC, Glover LE, Weinbren N, Rizzi JA, Ishikawa H, Shinozuka K et al (2011) Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol 2011:194720

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allickson J, Xiang C (2012) Human adult stem cells from menstrual blood and endometrial tissue. J Zhejiang Univ Sci B 13:419–420

    Article  PubMed  PubMed Central  Google Scholar 

  10. Du H, Taylor HS (2007) Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 25:2082–2086

    Article  CAS  PubMed  Google Scholar 

  11. Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani A, Heidari-Vala H, Soleimani M et al (2014) Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif 47:615–623

    Article  CAS  PubMed  Google Scholar 

  12. Kazemnejad S, Akhondi MM, Soleimani M, Zarnani AH, Khanmohammadi M, Darzi S et al (2012) Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanofibrous scaffold. Int J Artif Organs 35:55–66

    Article  CAS  PubMed  Google Scholar 

  13. Khanmohammadi M, Khanjani S, Bakhtyari MS, Zarnani AH, Edalatkhah H, Akhondi MM et al (2012) Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture. Int J Hematol 95:484–493

    Article  PubMed  Google Scholar 

  14. Azedi F, Kazemnejad S, Zarnani A, Behzadi G, Vasei M, Khanmohammadi M et al (2014) Differentiation potential of menstrual blood- versus bone marrow stem cells into glial-like cells. Cell Biol Int 38:615–624

    Article  CAS  PubMed  Google Scholar 

  15. Khanjani S, Khanmohammadi M, Zarnani AH, Akhondi MM, Ahani A, Ghaempanah Z et al (2014) Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow- derived stem cells into hepatocyte-like cells. PLoS One 9:1–13

    Article  Google Scholar 

  16. Khanjani S, Khanmohammadi M, Zarnani AH, Talebi S, Edalatkhah H, Eghtesad S et al (2013) Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. J Tissue Eng Regen Med. doi:10.1002/term.1715

    PubMed  Google Scholar 

  17. Darzi S, Zarnani AH, Jeddi-Tehrani M, Entezami K, Mirzadegan E, Akhondi MM et al (2012) Osteogenic differentiation of stem cells derived from menstrual blood versus bone marrow in the presence of human platelet releasate. Tissue Eng Part A 18:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allickson J, G Sanchez A, Yefimenko N, Borlongan CV, Sanberg PR (2011) Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem Cell J 3:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rodrigues M, Dmitriev D, Rodrigues JR, Glover L, Sanberg P, Allickson G et al (2012) Menstrual blood transplantation for ischemic stroke: therapeutic mechanisms and practical issues. Interv Med Appl Sci 4:59–68

    PubMed  PubMed Central  Google Scholar 

  20. Rodrigues MC, Voltarelli J, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S et al (2011) Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 36:177–190

    Article  PubMed  Google Scholar 

  21. Zhong Z, Patel AN, Ichim TE, Riordan HW, Min WP, Woods EJ et al (2009) Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 7:15. doi:10.1186/1479-5876-7-15

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG et al (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Radtke C, Schmitz B, Spies M, Kocsis J, Vogt P (2009) Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Devl Neurosci 27:817–823

    Article  CAS  Google Scholar 

  24. Hermann A, Gastl R, Liebau S, Oana Popa M, Fiedler J, Boehm B et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422

    Article  CAS  PubMed  Google Scholar 

  25. Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  26. Suslov O, Kukekov V, Ignatova T, Steindler D (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci U S A 99:14506–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Othman M, Lu C, Klueber K, Winstead W, Rosien F (2005) Clonal analysis of adult human olfactory neurosphere forming cells. Biotech Histochem 80:189–200

    Article  CAS  PubMed  Google Scholar 

  28. Coles B, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence J et al (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101:15772–15777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katsetos C, Legido A, Perentes E, Mork S (2003) Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 18:851–866

    Article  PubMed  Google Scholar 

  30. Pontes A, Zhang Y, Hu, W (2013) Novel functions of GABA signaling in adult neurogenesis. Front Biol (Beijing). doi:10.1007/s11515-013-1270-2

    Google Scholar 

  31. Young SZ, Bordey A (2009) GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 24:171–185

    Article  CAS  Google Scholar 

  32. Shafit-Zagardo B, Kalcheva N (1998) Making sense of the multiple MAP-2 transcripts and their role in the neuron. Mol Neurobiol 16:149–162

    Article  CAS  PubMed  Google Scholar 

  33. Wislet-Gendebien S, Hans G, Leprince P, Rigo J, Moon G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  PubMed  Google Scholar 

  34. Park D, Shao Y, Xiang A, Mao F, Zhang L, Di C, Liu X (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171

    Article  CAS  PubMed  Google Scholar 

  35. Li GR, Sun H, Deng X, Lau CP (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 2:371–382

    Article  Google Scholar 

  36. Yu L, ZhiZhong Y, YaZhu W, Yubin D, Guangqian Z (2011) Induction-dependent neural marker expression and electrophysiological characteristics of bone marrow mesenchymal stem cells that naturally express high levels of nestin. Chin Sci Bull 56:640–646

    Article  Google Scholar 

  37. Yi T, Lee HJ, Cho YK, Jeon MH, Song SU (2014) Molecular characterization of neurally differentiated human bone marrow-derived clonal mesenchymal stem cells. Immune Netw 14:54–65

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kazemnejad S, Allameh A, Gharehbaghian A, Soleimani M, Amirizadeh N, Jazayeri M (2008) Efficient replacing of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone marrow-derived mesenchymal stem cells to functional hepatocytes-like cells. Vox Sang 95:149–158

    Article  CAS  PubMed  Google Scholar 

  39. Hermann A, Liebau S, Gastl R, Fickert S, Habisch H, Fiedler J et al (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83:1502–1514

    Article  CAS  PubMed  Google Scholar 

  40. Gargett CE, Schwab KE, Deane JA (2016) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22(2):137–163

    PubMed  Google Scholar 

  41. Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, Van Den Hoff M et al (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfaffl M, HorganG, Dempfle L (2002) Relative expression software tool (REST) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  44. Gong M, Bi Y, Jiang W, Zhang Y, Chen L, Hou N, Liu Y, Wei X, Chen J, Li T (2011) Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neural differentiation and neuroregeneration associated studies. J Biomed Sci 18(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  CAS  PubMed  Google Scholar 

  46. Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27(12):2928–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  CAS  PubMed  Google Scholar 

  48. Lu P, Blesch A, Tuszynski M (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? Neurosci Res 77:174–191

    Article  CAS  Google Scholar 

  49. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption o f actin cytoskeleton induces rapid morphological changes and mimics neural phenotype. J Neurosci Res 77:192–204

    Article  CAS  PubMed  Google Scholar 

  50. Bertani N, Malatesta P, Volpi G, Sonego P, Perris R (2005) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 118:3925–3936

    Article  CAS  PubMed  Google Scholar 

  51. Roedt R, Pinxteren J, Van Dyche A, Waeytens A, Craeye D, Timmermans F et al (2007) Differentiation assays of bone marrow-derived multipotent adult progenitor cell (MAPC)-like cells towards neural cells cannot depend on morphology and a limited set of neural markers. Exp Neurol 203:542–554

    Article  Google Scholar 

  52. Wislet-Gendebian S, Bruyere F, Hans G, Leprince P, Moonen G, Rogister B (2004) Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci 5:33. doi:10.1186/1471-2202-5-33

    Article  Google Scholar 

  53. Caddick J, Kingham P, Gardiner N, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 54:840–849

    Article  PubMed  Google Scholar 

  54. Eng L, Ghirnikar R, Lee Y (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  CAS  PubMed  Google Scholar 

  55. Hendrickson ML, Rao AJ, Demerdash ONA, Kalil RE (2011) Expression of Nestin by Neural Cells in the Adult Rat and Human Brain. PLoS One 6:e18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ashian P, Elbarbary A, Edmonds B, Deugarte D, Zhu M, Zuk P, Lorenz H et al (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922–1931

    Article  Google Scholar 

  57. Lee T, Yoon J (2008) Intracerebral transplantation of human adipose tissue stromal cells after middle cerebral artery occlusion in rats. J Clin Neurosci Res 15:907–912

    Article  Google Scholar 

  58. Jang S, Cho H, Cho Y, Park J, Jeong H (2011) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Saeed Talebi for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azedi, F., Kazemnejad, S., Zarnani, A.H. et al. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 44, 169–182 (2017). https://doi.org/10.1007/s11033-016-4095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4095-7

Keywords

Navigation