Skip to main content

Advertisement

Log in

A plant oxysterol, 28-homobrassinolide binds HMGCoA reductase catalytic cleft: stereoselective avidity affects enzyme function

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Understanding the influence of ubiquitously present plant steroids on mammalian cell biology is currently of interest. Feedback inhibition of HMGCoA reductase (HMGCR) catalytic activity in the transformation of HMG-CoA to mevalonate is a significant regulatory step in sterol biosynthetic pathway. To assess the role of dietary steroids in this biochemical transformation, the phytosteroid isoform 28-homobrassinolide (28-HB), 90 % pure, obtained from Godrej Agrovet (India) was used to determine its effect on mammalian HMG-CoA reductase. Photometric assay of pure human and select rat tissue HMGCR post 28-HB oral feed, PCR-HMGCR gene expression, and in silico docking of 28-HB and HMGCoA on HMGCR protein template were carried out. Using an oral feed regimen of pure 28-HB, we noted a decrease of 16 % in liver, 17.1 % in kidney and 9.3 % in testicular HMGCR enzyme activity, 25 % in HMGCR gene expression and 44 % in the activity of pure human HMGCR due to this plant oxysterol. In silico docking studies yielded binding metrics for 28-HB-HMGCR lower than for HMGCoA-HMGCR, indicating stronger binding of HMGCR by this ligand. 28-HB exerts differential effects on rat tissue HMGCR, down regulates liver HMGCR gene expression and significantly inhibits HMGCR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294(5548):1866–1870

    Article  CAS  PubMed  Google Scholar 

  2. Edwards PA, Kast HR, Anisfeld AM (2002) BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res 43(1):2–12

    CAS  PubMed  Google Scholar 

  3. Premalatha R, Jubendradass R, Rani SJ, Srikumar K, Mathur PP (2013) A phytooxysterol, 28-homobrassinolide modulates rat testicular steroidogenesis in normal and diabetic rats. Reprod Sci 20(5):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsuda H, Kawaba T, Yamamoto Y (1970) Pharmacological studies of insect metamorphotic steroids. Nihon Yakurigaku Zasshi. Folia Pharmacol Jpn 66(5):551–563

    Article  CAS  Google Scholar 

  5. Muthuraman P, Srikumar K (2010) A plant oxysterol as a regulator of glucose homeostasis. Int J Phytomed 2(2):136–149

    Article  Google Scholar 

  6. Premalatha R, Srikumar K, Vijayalaksmi D, Kumar GN, Mathur PP (2014) 28-Homobrassinolide: a novel oxysterol transactivating LXR gene expression. Mol Biol Rep 41(11):7447–7461

    Article  CAS  PubMed  Google Scholar 

  7. Kleinsek DA, Ranganathan S, Porter JW (1977) Purification of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. Proc Natl Acad Sci USA 74(4):1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirtley ME, Rudney H (1967) Some properties and mechanism of action of the β-hydroxy-β-methylglutaryl coenzyme A reductase of yeast. Biochemistry 6(1):230–238

    Article  CAS  PubMed  Google Scholar 

  9. Zak B (1977) Cholesterol methodologies: a review. Clin Chem 23(7):1201–1214

    CAS  PubMed  Google Scholar 

  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  11. Michael RG, Joseph S (2012) Molecular cloning a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  12. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  CAS  PubMed  Google Scholar 

  13. Kandutsch AA, Chen HW, Heiniger HJ (1978) Biological activity of some oxygenated sterols. Science 201(4355):498–501

    Article  CAS  PubMed  Google Scholar 

  14. Kandutsch AA, Thompson EB (1980) Cytosolic proteins that bind oxygenated sterols. Cellular distribution, specificity, and some properties. J Biol Chem 255(22):10813–10821

    CAS  PubMed  Google Scholar 

  15. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93(5):693–704

    Article  CAS  PubMed  Google Scholar 

  16. Hayden MR, Clee SM, Brooks-Wilson A, Genest J, Attie A, Kastelein JJ (2000) Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Curr Opin Lipidol 11(2):117–122

    Article  CAS  PubMed  Google Scholar 

  17. Brunham LR, Kruit JK, Pape TD, Parks JS, Kuipers F, Hayden MR (2006) Tissue-specific induction of intestinal ABCA1 expression with a liver X receptor agonist raises plasma HDL cholesterol levels. Circ Res 99(7):672–674

    Article  CAS  PubMed  Google Scholar 

  18. Steffensen KR, Gustafsson JA (2004) Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(Suppl 1):S36–S42

    Article  CAS  PubMed  Google Scholar 

  19. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L et al (2000) Role of LXRs in control of lipogenesis. Genes Dev 14(22):2831–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99(5):846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support received from Dept. of Biotechnology, Govt. of India under DBT-IPLS programme (Sanction Order No.: BT/PR14554/INF/22/125/2010 dated: 28.09.2010), University Grants Commission, New Delhi, Department of Science and Technology, Government of India, UGC-SAP, and DST-FIST programs. Research carried out at the Centre for Bioinformatics, Pondicherry University, Puducherry, India, is funded by the Department of Information Technology (DIT) and the Department of Biotechnology (DBT), Government of India, New Delhi, India. The authors gratefully acknowledge Dr. Asmita Dasgupta and Mr. N. Jayachandra Reddy, Pondicherry University, Puducherry, for providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotteazeth Srikumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, V., Vijayalaksmi, D., Gulipalli, J. et al. A plant oxysterol, 28-homobrassinolide binds HMGCoA reductase catalytic cleft: stereoselective avidity affects enzyme function. Mol Biol Rep 43, 1049–1058 (2016). https://doi.org/10.1007/s11033-016-4052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4052-5

Keywords

Navigation