Skip to main content
Log in

28-Homobrassinolide: a novel oxysterol transactivating LXR gene expression

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cholesterol is the template for steroid hormone biosynthesis. Cholesterol homeostasis is regulated by Cyt-P450 oxygenated cholesterols acting as ligands on LXR-α and LXR-β transcription factors that are now emerging as drug targets. Heterodimerization of LXRs with retinoic acid receptor is considered a prerequisite for target gene activation. Dietary plant oxysterol 28-homobrassinolide (28-HB) is a proven antihyperglycemic and a pro-steroidogenic agent in the rat. Whether 28-HB has a role in LXR gene expression was therefore investigated using oral gavage (15 days) of 28-HB (333 µg/kg b w) to normal and diabetic rat. PCR amplified LXR-α and β mRNA transcripts from treated rat liver and testis exhibited quantitative differences in their expression. Conformational differences in 28-HB docking to LXR-α and β binding domains were also noted through in silico studies, LXR-β adopting lesser specificity. We report that 28-HB transactivates LXR genes in the rat tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lund E, Bjoerkhem I (1995) Role of oxysterols in the regulation of cholesterol homeostasis: a critical evaluation. Acc Chem Res 28:241–249

    Article  CAS  Google Scholar 

  2. Janowski BA, Willy PJ, Devi TR et al (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    Article  PubMed  CAS  Google Scholar 

  3. Ryan KK, Seeley RJ (2013) Food as a hormone. Science 339:918–919

    Article  PubMed  CAS  Google Scholar 

  4. Verger PH, LeBlanc JC (2003) Concentration of phytohormones in food and feed and their impact on the human exposure. Pure Appl Chem 75:1873–1880

    Article  CAS  Google Scholar 

  5. Muthuraman P, Srikumar K (2007) A brassinosteroid as an antihyperglycemic in alloxan induced diabetic rats. J Curr Sci 9:22–28

    Google Scholar 

  6. Muthuraman P, Ravikumar S, Vikramathithan J, Nirmalkumar G, Srikumar K (2010) Effect of phytohormones on tissue hexokinase and on some blood components in wistar rats. Int J Drug Deliv 2:168–172

    Article  CAS  Google Scholar 

  7. Premalatha R, Jubendradass R, Rani SJ et al (2013) A phytooxysterol, 28-homobrassinolide modulates rat testicular steroidogenesis in normal and diabetic rats. Reprod Sci 20:589–596

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bergstrom S, Wintersteiner O (1941) Autoxidation of sterols in colloidal aqueous solution: the nature of the products formed from cholesterol. J Biol Chem 141:597–610

    CAS  Google Scholar 

  9. Schultz JR, Tu H, Luk A et al (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Collins JL, Fivush AM, Watson MA et al (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966

    Article  PubMed  CAS  Google Scholar 

  11. Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Venkateswaran A, Laffitte BA, Joseph SB et al (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 97:12097–12102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Im SS, Osborne TF (2011) Liver X receptors in atherosclerosis and inflammation. Circ Res 108:996–1001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Joseph SB, Castrillo A, Laffitte BA et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  PubMed  CAS  Google Scholar 

  15. Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272:3137–3140

    Article  PubMed  CAS  Google Scholar 

  16. Sparrow CP, Baffic J, Lam MH et al (2002) A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem 277:10021–10027

    Article  PubMed  CAS  Google Scholar 

  17. Shen Q, Bai Y, Chang KC et al (2011) Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer cistrome reveals coordination of LXR and AP1 signaling in keratinocytes. J Biol Chem 286:14554–14563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Svensson S, Ostberg T, Jacobsson M et al (2003) Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J 22:4625–4633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Zak B (1977) Cholesterol methodologies: a review. Clin Chem 23:1201–1214

    PubMed  CAS  Google Scholar 

  20. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  22. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook JFE, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  24. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  25. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  CAS  Google Scholar 

  26. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  PubMed  CAS  Google Scholar 

  27. Bottegoni G (2011) Protein-ligand docking. Front Biosci (Landmark Ed) 16:2289–2306

    Article  CAS  Google Scholar 

  28. Frenoux JM, Vernet P, Volle DH et al (2004) Nuclear oxysterol receptors, LXRs, are involved in the maintenance of mouse caput epididymidis structure and functions. J Mol Endocrinol 33:361–375

    Article  PubMed  CAS  Google Scholar 

  29. Prufer K, Boudreaux J (2007) Nuclear localization of liver X receptor alpha and beta is differentially regulated. J Cell Biochem 100:69–85

    Article  PubMed  CAS  Google Scholar 

  30. Robertson KM, Schuster GU, Steffensen KR et al (2005) The liver X receptor-β is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 146:2519–2530

    Article  PubMed  CAS  Google Scholar 

  31. Volle DH, Mouzat K, Duggavathi R et al (2007) Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol Endocrinol 21:1014–1027

    Article  PubMed  CAS  Google Scholar 

  32. Volle DH, Lobaccaro JM (2007) Role of the nuclear receptors for oxysterols LXRs in steroidogenic tissues: beyond the “foie gras”, the steroids and sex? Mol Cell Endocrinol 265–266:183–189

    Article  PubMed  Google Scholar 

  33. Premalatha R, JubendradassR SrikumarK et al (2013) Gibberellic acid acts as an agonist of steroidogenesis in male rats. Andrologia. doi:10.1111/and.12171

    PubMed  Google Scholar 

  34. Joseph SB, McKilligin E, Pei L et al (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99:7604–7609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Steffensen KR, Gustafsson JA (2004) Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(Suppl 1):S36–S42

    Article  PubMed  CAS  Google Scholar 

  36. Vucic E, Calcagno C, Dickson SD et al (2012) Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC Cardiovasc Imaging 5:819–828

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koldamova RP, Lefterov IM, Staufenbiel M et al (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 280:4079–4088

    Article  PubMed  CAS  Google Scholar 

  38. Joseph SB, Bradley MN, Castrillo A et al (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119:299–309

    Article  PubMed  CAS  Google Scholar 

  39. Cruz-Garcia L, Sanchez-Gurmaches J, Gutierrez J et al (2012) Role of LXR in trout adipocytes: target genes, hormonal regulation, adipocyte differentiation and relation to lipolysis. Comp Biochem Physiol A 163:120–126

    Article  CAS  Google Scholar 

  40. Jia Y, Hoang MH, Jun HJ et al (2013) Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorg Med Chem Lett 23:4185–4190

    Article  PubMed  CAS  Google Scholar 

  41. Molteni V, Li X, Nabakka J et al (2007) N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem 50:4255–4259

    Article  PubMed  CAS  Google Scholar 

  42. Willy PJ, Umesono K, Ong ES et al (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045

    Article  PubMed  CAS  Google Scholar 

  43. Chen M, Beaven S, Tontonoz P (2005) Identification and characterization of two alternatively spliced transcript variants of human liver X receptor alpha. J Lipid Res 46:2570–2579

    Article  PubMed  CAS  Google Scholar 

  44. Hashimoto K, Ishida E, Matsumoto S et al (2009) A liver X receptor (LXR)-beta alternative splicing variant (LXRBSV) acts as an RNA co-activator of LXR-beta. Biochem Biophys Res Commun 390:1260–1265

    Article  PubMed  CAS  Google Scholar 

  45. Endo-Umeda K, Uno S, Fujimori K et al (2012) Differential expression and function of alternative splicing variants of human liver X receptor alpha. Mol Pharmacol 81:800–810

    Article  PubMed  CAS  Google Scholar 

  46. Kovanen PT, Pentikainen MO (2003) Pharmacological evidence for a role of liver X receptors in atheroprotection. FEBS Lett 536:3–5

    Article  PubMed  CAS  Google Scholar 

  47. Bonamassa B, Moschetta A (2013) Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab 24:120–128

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Breevoort SR, Angdisen J et al (2012) Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 122:1688–1699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Cao G, Liang Y, Broderick CL et al (2003) Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 278:1131–1136

    Article  PubMed  CAS  Google Scholar 

  50. D’Cruz SC, Jubendradass R, Jayakanthan M et al (2012) Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study. Food Chem Toxicol 50:1124–1133

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from University Grants Commission, New Delhi, Department of Science and Technology, Government of India, UGC-SAP, DBT-IPLS and DST-FIST programs. P. P. Mathur acknowledges the Government of India, Department of Biotechnology, BT/BI/03/015/2002, and Department of Information Technology, DIT/R&D/BIO/15(9)/2007. RP gratefully acknowledges Technical help received from N. Selvaraj, Department of Biochemistry, Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, V. Athithan and R. Jubendradass of Department of Biochemistry & Molecular Biology, Pondicherry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Mathur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premalatha, R., Srikumar, K., Vijayalaksmi, D. et al. 28-Homobrassinolide: a novel oxysterol transactivating LXR gene expression. Mol Biol Rep 41, 7447–7461 (2014). https://doi.org/10.1007/s11033-014-3632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3632-5

Keywords

Navigation