Skip to main content
Log in

Characterization, expression and silencing by RNAi of p53 from Penaeus monodon

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12–96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278(5701):261–263. doi:10.1038/278261a0

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi:10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  3. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16. doi:10.1038/358015a0

    Article  CAS  PubMed  Google Scholar 

  4. Pietenpol JA, Tokino T, Thiagalingam S, Ei-Deiry WS, Kinzler KW, Vogelstein B (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA 91(6):1998–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55(22):5187–5190

    CAS  PubMed  Google Scholar 

  6. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704. doi:10.1038/366701a0

    Article  CAS  PubMed  Google Scholar 

  7. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Edward Mercer W, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825. doi:10.1016/0092-8674(93)90500-P

    Article  CAS  PubMed  Google Scholar 

  8. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501. doi:10.1126/science.282.5393.1497

    Article  CAS  PubMed  Google Scholar 

  9. Deng C, Zhang P, Wade Harper J, Elledge SJ, Leder P (1995) Mice lacking p21 CIP1-WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684. doi:10.1016/0092-8674(95)90039-X

    Article  CAS  PubMed  Google Scholar 

  10. Lukin DJ, Carvajal LA, Liu WJ, Resnick-Silverman L, Manfredi JJ (2015) p53 promotes cell survival due to the reversibility of Its cell-cycle checkpoints. Mol Cancer Res 13(1):16–28. doi:10.1158/1541-7786.MCR-14-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hollstein M, Sidransky D, Vogelstein B, Harrist CC (1991) p53 mutations in human cancers. Science 253(5015):49–53. doi:10.1126/science.1905840

    Article  CAS  PubMed  Google Scholar 

  12. Nevis KR, Cordeiro-Stone M, Cook JG (2009) Origin licensing and p53 status regulate Cdk2 activity during G1. Cell Cycle 8(12):1952–1963. doi:10.4161/cc.8.12.8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92(18):8493–8497. doi:10.1073/pnas.92.18.8493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krause MK, Rhodes LD, Van Beneden RJ (1997) Cloning of the p53 tumor suppressor gene from the Japanese medaka (Oryzias latipes) and evaluation of mutational hotspots in MNNG-exposed fish. Gene 189(1):101–106. doi:10.1016/S0378-1119(96)00841-4

    Article  CAS  PubMed  Google Scholar 

  15. Liu M, Tee C, Zeng F, Sherry JP, Dixon B, Bols NC, Duncker BP (2011) Characterization of p53 expression in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 154(4):326–332. doi:10.1016/j.cbpc.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  16. Qi Z-H, Liu Y-F, Luo S-W, Chen C-X, Liu Y, Wang W-N (2013) Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress. Fish Shellfish Immunol 35(5):1466–1476. doi:10.1016/j.fsi.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  17. Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, Panyim S (2008) Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar Biotechnol (NY) 10(4):374–381. doi:10.1007/s10126-007-9073-6

    Article  CAS  Google Scholar 

  18. Treerattrakool S, Panyim S, Udomkit A (2011) Induction of ovarian maturation and spawning in Penaeus monodon broodstock by double-stranded RNA. Mar Biotechnol (NY) 13(2):163–169. doi:10.1007/s10126-010-9276-0

    Article  CAS  Google Scholar 

  19. Su J, Oanh DTH, Lyons RE, Leeton L, van Hulten MCW, Tan S-H, Song L, Rajendran KV, Walker PJ (2008) A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: identification and functional characterisation of Dicer-1. Fish Shellfish Immunol 24(2):223–233. doi:10.1016/j.fsi.2007.11.006

    Article  PubMed  Google Scholar 

  20. Wongprasert K, Asuvapongpatana S, Poltana P, Tiensuwan M, Withyachumnarnkul B (2006) Serotonin stimulates ovarian maturation and spawning in the black tiger shrimp Penaeus monodon. Aquaculture 261(4):1447–1454. doi:10.1016/j.aquaculture.2006.08.044

    Article  CAS  Google Scholar 

  21. Vaca AA, Alfaro J (2000) Ovarian maturation and spawning the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182(3):373–385. doi:10.1016/S0044-8486(99)00267-7

    Article  CAS  Google Scholar 

  22. Phinyo M, Visudtiphole V, Roytrakul S, Phaonakrop N, Jarayabhand P, Klinbunga S (2013) Characterization and expression of cell division cycle 2 (Cdc2) mRNA and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Gen Comp Endocrinol 193(1):103–111. doi:10.1016/j.ygcen.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  23. Phinyo M, Nounurai P, Hiransuchalert R, Jarayabhand P, Klinbunga S (2014) Characterization and expression analysis of cyclin-dependent kinase 7 gene and protein in ovaries of the giant tiger shrimp Penaeus monodon. Aquaculture 432(5):286–294. doi:10.1016/j.aquaculture.2014.05.022

    Article  CAS  Google Scholar 

  24. Huang JH, Zhou FL, Ma ZM, Ye L, Jiang SG (2006) Morphological and histological observation on ovary development of Penaeus monodon from northern South China Sea. J Trop Oceanogr 25(3):47–52

    Google Scholar 

  25. Qiu L, Jiang S, Huang J, Wang W, Zhu C, Su T (2009) Molecular cloning and mRNA expression of cyclophilin A gene in black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 26(1):115–121. doi:10.1016/j.fsi.2008.03.022

    Article  CAS  PubMed  Google Scholar 

  26. Zhang D, Jiang J, Jiang S, Ma J, Su T, Qiu L, Zhu C, Xu X (2009) Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. Fish Shellfish Immunol 27(3):391–396. doi:10.1016/j.fsi.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen J, Liu P, Li Z, Chen Y, Qiu GF (2013) The cloning of the cdk2 transcript and the localization of its expression during gametogenesis in the freshwater giant prawn, Macrobrachium rosenbergii. Mol Biol Rep 40(8):4781–4790. doi:10.1007/s11033-013-2574-7

    Article  CAS  PubMed  Google Scholar 

  29. LI W-X, Huang H-Y, Huang J-R, Yu J-J, Ma J, Ye H-H (2013) Molecular cloning, expression profiles and subcellular localization of cyclin B in ovary of the mud crab, Scylla paramamosain. Genes Genomics 35(2):185–195. doi:10.1007/s13258-013-0077-5

    Article  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Ongvarrasopone C, Roshorm Y, Panyim S (2007) A simple and cost effective method to generate dsRNA for RNAi studies in invertebrates. ScienceAsia 33(1):35–39. doi:10.2306/scienceasia1513-1874.2007.33.035

    Article  CAS  Google Scholar 

  32. Xianzong W (2013) Expression change of genes involved in Litopenaeus vannamei RNA interference under challenge of six double-stranded RNAs. D. Northwest A&F University, Xianyang

    Google Scholar 

  33. Charoensapsri W, Amparyup P, Hirono I, Aoki T, Tassanakajon A (2009) Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection. Dev Comp Immunol 33(7):811–820. doi:10.1016/j.dci.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  34. Qian Z, Liu T, Liu Q, He S, Liu Y, Hou F, Wang X, Mi X, Cai C, Liu X (2014) p53 is involved in shrimp survival via its regulation roles on MnSOD and GPx in response to acute environmental stresses. Comp Biochem Physiol C Toxicol Pharmacol 159:38–51. doi:10.1016/j.cbpc.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  35. Lamb P, Crawford L (1986) Characterization of the human p53 gene. Mol Cell Biol 6(5):1379–1385. doi:10.1128/MCB.6.5.1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou C-C, Yang W-X (2013) Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Mol Biol Rep 40(2):1043–1051. doi:10.1007/s11033-012-2145-3

    Article  CAS  PubMed  Google Scholar 

  37. Qiu GF, Yamano K, Unuma T (2005) Cathepsin C transcripts are differentially expressed in the final stages of oocyte maturation in kuruma prawn Marsupenaeus japonicus. Comp Biochem Physiol B Biochem Mol Biol 140(2):171–181. doi:10.1016/j.cbpc.2004.09.027

    Article  PubMed  Google Scholar 

  38. Qiu GF, Ramachandra RK, Rexroad CE 3rd, Yao J (2008) Molecular characterization and expression profiles of cyclin B1, B2 and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 105(3–4):209–225. doi:10.1016/j.anireprosci.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  39. Visudtiphole V, Klinbunga S, Kirtikara K (2009) Molecular characterization and expression profiles of cyclin A and cyclin B during ovarian development of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 152(4):535–543. doi:10.1016/j.cbpa.2008.12.011

    Article  PubMed  Google Scholar 

  40. Dai W, Fu M, Zhao C, Zhou F, Yang Q, Wang Y, Shi J, Qiu L (2015) Molecular cloning and expression analysis of CDK2 gene from black tiger shrimp (Penaeus monodon). South China Fisheries Science 11(2):1–11. doi:10.3969/j.issn.2095-0780.02.001

    Google Scholar 

  41. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98(17):9742–9747. doi:10.1073/pnas.171251798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tseng D, Chen Y, Kou G, Lo C, Kuo C (2001) Hepatopancreas is the extraovarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 129(4):909–917. doi:10.1016/S1095-6433(01)00355-5

    Article  CAS  PubMed  Google Scholar 

  43. Urtgam S, Treerattrakool S, Roytrakul S, Wongtripop S, Prommoon J, Panyim S, Udomkit A (2015) Correlation between gonad-inhibiting hormone and vitellogenin during ovarian maturation in the domesticated Penaeus monodon. Aquaculture 437:1–9. doi:10.1016/j.aquaculture.2014.11.014

    Article  CAS  Google Scholar 

  44. Bai H, Qiao H, Li F, Fu H, Sun S, Zhang W, Jin S, Gong Y, Jiang S, Xiong Y (2015) Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene 562(1):22–31. doi:10.1016/j.gene.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  45. Kulkarni GK, Nagabhushanam R, Amaldoss G, Jaiswal RG, Fingerman M (1992) In vivo stimulation of ovarian development in the red swamp crayfish, Procambarus clarkii (Girard), by 5-hydroxytryptamine. Invertebr Reprod Dev 21(3):231–239. doi:10.1080/07924259.1992.9672242

    Article  CAS  Google Scholar 

  46. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16(7):393–405. doi:10.1038/nrm4007

    Article  CAS  PubMed  Google Scholar 

  47. Schavolt KL, Pietenpol JA (2007) p53 and ΔNp63α differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene 26(42):6125–6132. doi:10.1038/sj.onc.1210441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by The Special Fund for Fisheries-Scientific Research of Guangdong Province (A201300B03), Key Science and Technology Plan Projects of Hainan Province (ZDXM2014057), Special Scientific Research Funds for Central Non-profit Institutes (2014TS12,2015YD05), and The Guangdong Provincial Science and Technology Program (2014A020208039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Qiu.

Additional information

Wenting Dai and Lihua Qiu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Qiu, L., Zhao, C. et al. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon . Mol Biol Rep 43, 549–561 (2016). https://doi.org/10.1007/s11033-016-3988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3988-9

Keywords

Navigation