Skip to main content
Log in

Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

p53, as a “Guardian of the Genome”, plays an important role in cell cycle arrest, apoptosis, DNA repair and inhibition of angiogenesis in different tissues including testis. p53 gene and its protein perform many essential roles for mammalian spermatogenesis. To explore its functions during spermatogenesis in Eriocheir sinensis, we have cloned and sequenced the cDNA (1,218 bp) of p53 from the testis by degenerating primer PCR and rapid-amplification of cDNA ends. The protein alignment of p53 shows the conserved DNA binding domain, dimerization site and zinc binding site consisted of the predicted structures. Phylogenetic analysis revealed that p53 was more closer to Marsupenaeus japonicus and Tigriopus japonicus than other examined species. Tissue expression analysis of p53 mRNA showed p53 was distinctly expressed in accessory sexual gland, muscle, gill, heart, hepatopancreas and testis. In situ hybridization revealed that the p53 mRNA was weakly distributed around the nucleus, but stronger in the invaginated acrosomal tubule at the early stage. At the middle stage, p53 mRNA signal was increased than the early stage and the signal displayed dot-like pattern on the surface of cup-like nucleus. The signal on acrosomal cap is stronger than on the acrosomal tubule, despite acrosomal tubule signal was also distinct. At the late stage, the signal was still mainly located in acrosomal cap and acrosomal tubule. Sporadic signal were found surrounding the cup-like nucleus, but they were very weak. In the mature sperm, the signal was dramatically decreased. Even though the signal on cup-like nucleus and acrosomal tubule were distinct, they were weaker than those in middle stage. Based on these results, we concluded that p53 may play an important role in formation of acrosome biogenesis and nuclear shaping during spermiogenesis of E. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  2. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  3. Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmüller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles of activated and non-activated p53. Oncogene 18:7706–7717

    Article  PubMed  CAS  Google Scholar 

  4. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  5. Shetty G, Shao SH, Weng CC (2008) P53-dependent apoptosis in the inhibition of spermatogonial differentiation in juvenile spermatogonial depletion (utp14bjsd) mice. Endocrinology 149(6):2773–2781

    Article  PubMed  CAS  Google Scholar 

  6. Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, Donehower LA, Levine AJ (1993) Mice with reduced level of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc Natl Acad Sci USA 90:9075–9079

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz D, Goldfinger N, Kam Z, Rotter V (1999) p53 Controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ 10:665–675

    PubMed  CAS  Google Scholar 

  8. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  PubMed  CAS  Google Scholar 

  9. Beumer TL, Roepers-Gajadien HL, Gademan IS, van Buul PP, Gil-Gomez G, Rutgers DH, de Rooij DG (1998) The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ 5:669–677

    Article  PubMed  CAS  Google Scholar 

  10. Baum JS, St George JP, McCall K (2005) Programmed cell death in the germline. Semin Cell Dev Biol 16:245–259

    Article  PubMed  CAS  Google Scholar 

  11. Walter CA, Intano GW, McCarrey JR, McMahan CA, Walter RB (1998) Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci USA 95:10015–10019

    Article  PubMed  CAS  Google Scholar 

  12. Xu G, Intano GW, McCarrey JR, Walter RB, McMahan CA, Walter CA (2008) Recovery of a low mutant frequency after ionizing radiation-induced mutagenesis during spermatogenesis. Mutat Res 654:150–157

    Article  PubMed  CAS  Google Scholar 

  13. Cansu A, Ekinci O, Ekinci O, Serdaroglu A, Erdogan D, Coskun ZK, Gürgen SG (2011) Methylphenidate has dose-dependent negative effects on rat spermatogenesis: decreased round spermatids and testicular weight and increased p53 expression and apoptosis. Hum Exp Toxicol 30(10):1592–1600

    Article  PubMed  CAS  Google Scholar 

  14. Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    Article  PubMed  CAS  Google Scholar 

  15. Wang R, Sperry AO (2008) Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 9:9

    Article  PubMed  Google Scholar 

  16. Du NS, Lai W, Xue LZ (1987) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decapoda). I. The morphology and ultrastructure of mature sperm. Oceanol Limnol Sin 18:119–125

    Google Scholar 

  17. Du NS, Xue LZ, Lai W (1988) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decapoda). II. Spermatogenesis. Oceanol Limnol Sin 19:71–75

    Google Scholar 

  18. Du NS (1998) Fertilization of Chinese mitten crab. Fish Sci Technol Inf 25:9–13

    Google Scholar 

  19. Wang DH, Hu JR, Wang LY, Hu YJ, Tan FQ, Zhou H, Shao JZ, Yang WX (2012) The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS ONE 7(6):e39920. doi:10.1371/journal.pone.0039920

    Article  PubMed  CAS  Google Scholar 

  20. Ambrish R, Alper K, Yang Z (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  Google Scholar 

  21. Yang Z (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    Google Scholar 

  22. Rutkowski R, Hofmann K, Gartner A (2010) Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2(7):a001131

    Article  PubMed  Google Scholar 

  23. Jassim OW, Fink JL, Cagan RL (2003) Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J 22:5622–5632

    Article  PubMed  CAS  Google Scholar 

  24. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615

    Article  PubMed  CAS  Google Scholar 

  25. Yamada Y, Davis KD, Coffman CR (2008) Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter. Development 135:207–216

    Article  PubMed  CAS  Google Scholar 

  26. Ventura N, Rea SL, Schiavi A, Torgovnick A, Testi R, Johnson TE (2009) p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell 8:380–393

    Article  PubMed  CAS  Google Scholar 

  27. Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G (2008) The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4:870–873

    PubMed  CAS  Google Scholar 

  28. Fuhrman LE, Goel AK, Smith J, Shianna KV, Aballay A (2009) Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 5:e1000657

    Article  PubMed  Google Scholar 

  29. Jana K, Jana N, De DK, Guha SK (2010) Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Mol Reprod Dev 77(9):820–833

    Article  PubMed  CAS  Google Scholar 

  30. Kalia S, Bansal MP (2008) p53 is involved in inducing testicular apoptosis in mice by the altered redox status following tertiary butyl hydroperoxide treatment. Chem Biol Interact 174(3):193–200

    Article  PubMed  CAS  Google Scholar 

  31. Xu G, Vogel KS, McMahan CA, Herbert DC, Walter CA (2010) BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice. Biol Reprod 83(6):979–987

    Article  PubMed  CAS  Google Scholar 

  32. Smeenk L, van Heeringen SJ, Koeppel M, van Driel MA, Bartels SJ, Akkers RC, Denissov S, Stunnenberg HG, Lohrum M (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36(11):3639–3654

    Article  PubMed  CAS  Google Scholar 

  33. Madhumalar A, Jun LH, Lane DP, Verma CS (2009) Dimerization of the core domain of the p53 family: a computational study. Cell Cycle 8(1):137–148

    Article  PubMed  CAS  Google Scholar 

  34. Beerli RR, Barbas CF 3rd (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135–141

    Article  PubMed  CAS  Google Scholar 

  35. Falke D, Fisher MH, Juliano RL (2004) Selective transcription of p53 target genes by zinc finger-p53 DNA binding domain chimeras. Biochim Biophys Acta 1681(1):15–27

    Article  PubMed  CAS  Google Scholar 

  36. McKee CM, Ye Y, Richburg JH (2006) Testicular germ cell sensitivity to TRAIL-induced apoptosis is dependent upon p53 expression and is synergistically enhanced by DR5 agonistic antibody treatment. Apoptosis 11(12):2237–2250

    Article  PubMed  CAS  Google Scholar 

  37. Campion SN, Sandrof MA, Yamasaki H, Boekelheide K (2010) Suppression of radiation-induced testicular germ cell apoptosis by 2,5-hexanedione pretreatment. III. Candidate gene analysis identifies a role for fas in the attenuation of X-ray-induced apoptosis. Toxicol Sci 117(2):466–474

    Article  PubMed  CAS  Google Scholar 

  38. Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W, Cai L (2011) Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 200(1–2):100–106

    Article  PubMed  CAS  Google Scholar 

  39. Saito M, Kumamoto K, Robles AI, Horikawa I, Furusato B, Okamura S, Goto A, Yamashita T, Nagashima M, Lee TL, Baxendale VJ, Rennert OM, Takenoshita S, Yokota J, Sesterhenn IA, Trivers GE, Hussain SP, Harris CC (2010) Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS ONE 5(11):e15541

    Article  PubMed  Google Scholar 

  40. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24(15):6728–6741

    Article  PubMed  CAS  Google Scholar 

  41. Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69(5):1719–1729

    Article  PubMed  CAS  Google Scholar 

  42. Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 157(2):123–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the Sperm Laboratory at Zhejiang University for their helpful discussion. This project was supported by National Natural Science Foundation of China (Nos. 41276151 and 31072198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, CC., Yang, WX. Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis . Mol Biol Rep 40, 1043–1051 (2013). https://doi.org/10.1007/s11033-012-2145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2145-3

Keywords

Navigation