Skip to main content
Log in

De novo assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in Lilium lancifolium

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plants have continually confrontation with different abiotic stresses, including salt, low temperature, drought or hormone stress. The plants acclimate to the environmental stresses relating with the falls of the molecular mesh including the stress signal receiver, signal transcriptional regulation and the expression of functional and structure genes. Using the RNA-seq, we carried out a transcriptional analysis under cold treatment for investigating a profound comprehension of the signal network and molecular metabolisms reaction included in abiotic stress reaction for Lilium lancifolium. Our study identified 18,722 unigenes had demonstrated the resemblance to the known exact proteins in the Swiss-Prot protein database and classified them by Gene ontology into three primary kinds: cellular component, biological process, and molecular function, and then 15,898 unigenes aligned to existing sequences in the KEGG databases. Based on the transcriptome results of cold stress, more stress-related genes were identified and analyzed of their expressions in other abiotic stress treatments as 37 °C, ABA, JA and Na. Meanwhile, bioinformatics qRT-PCR analyses of stress genes as LlDREB1, LlAP2, LlNAC1, LlHOT, LlR2R3-MYB and LlCDPK revealed that novel candidate genes encoding ethylene responsive transporters and serine/threonine receptor-like kinases, which contributed to speculate the signal regulation pathway during the abiotic stresses; engineering genes could also boost the tolerance to stress, as protected and maintained the function and structure of cellular components. Our research conjectured the abiotic stress signal transduction pathway and identified the expected key ingredients regulating the stress tolerance in Lilium lancifolium, which would enable the in-depth molecular exploration of stress-tolerance mechanisms in lily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DREB:

Dehydration responsive element binding protein

EREBP:

Ethylene-responsive element binding protein

MYB:

Myeloblastosis

NAC:

NAM, ATAF1-2, CUC2

TF:

Transcription factor

References

  1. Bray EA, Bailey-Serres J: Responses to abiotic stresses (chapter 22). In: W Gruissem, B Buchannan, R Jones (2000) Responses to abiotic stresses. American Society of Plant Physiologists, Rockville, pp 1158–1249

  2. Kaoru U, Yukio K, Motoaki S, Kazuo S (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  Google Scholar 

  3. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  4. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  CAS  PubMed  Google Scholar 

  5. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  7. Park EJ, Jeknic Z, Sakamoto A, Denoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  CAS  PubMed  Google Scholar 

  8. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  CAS  PubMed  Google Scholar 

  9. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4(49–56):9

    Google Scholar 

  10. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang JM, Yang Y, Liu XH (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genom 15:203

    Article  Google Scholar 

  13. Tsirigos A, Haiminen N, Bilal E, Utro F (2012) A computational platform for developing high-throughput analytics in genomics. Bioinformatics 28:282–283

    Article  CAS  PubMed  Google Scholar 

  14. Kakumanu A, Ambavaram MMR, Klumas C, Krishnan A, Batlang U (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol 160:846–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D (2013) An RNA-Seq transcriptome analysis of Pi deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20(2):646–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Raherison E, Rigault P, Caron S, Poulin P, Boyle B, Verta JP, Giguere I, Bomal C, Bohlmann J, MacKay J (2012) Transcriptome profiling in conifers and the PiceaGen Express database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genom 13:434–449

    Article  CAS  Google Scholar 

  18. Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31(4):452–461

    Article  PubMed  Google Scholar 

  19. Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ (2012) De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genom 13:133–137

    Article  CAS  Google Scholar 

  20. Cong HQ, Li ZY, Xu L (2013) Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis. Plant Growth Regul 69:247–257

    Article  CAS  Google Scholar 

  21. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7(4):334–346

    Article  CAS  PubMed  Google Scholar 

  22. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42(12):1060–1067

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and Characterisation of the Transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

  24. Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V, Ahuja PS, Kumar S (2012) De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom 13:126

    Article  CAS  Google Scholar 

  25. Chen JH, Song YP (2013) Genome-Wide analysis of gene expression in response to drought stress in Populus simomnii. Plant Mol Biol Rep 31:946–996

    Article  CAS  Google Scholar 

  26. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  27. Qiu ZB, Wan LC (2013) The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. New Phytol 199:627–870

    Article  Google Scholar 

  28. Xin Z (2001) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell Environ 23:893–902

    Article  Google Scholar 

  29. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  30. Silva JMd, Arrabac MC (2004) Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stresses. J Plant Physiol 161:551–555

    Article  PubMed  Google Scholar 

  31. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  PubMed  Google Scholar 

  32. Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  33. Cooper GM, Hausman RE (2012) The cell: a molecular approach. Beijing Sci Publ 15:603–605. ISBN 978-7-03-031324-9

  34. Donald WH, Rebecca B (1996) Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ‘863’ research program (Grant No. 2011AA10020804), China National Natural Science Foundation (Grant No. 31071815 and No. 31272204), and the D. Programs Foundation of the Ministry of Education of China (Grant No. 20110014110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3725_MOESM1_ESM.doc

Availability of supporting data: The supporting data set could be available in the NCBI GenBank repository (http://www.ncbi.nlm.nih.gov/genbank/), the ID numbers are KJ489026, KJ489025, KJ467617, KJ489024, KJ467624, KJ467618, KJ467623, KJ467622, KJ467620, KJ467621. Additional file 1: Table S1. Expressions of different genes using the Heat-map. Heat-map of 102 differentially expressed genes involved in the cold response and acclimation of Lilium lancifolium. (DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Q., Yang, Y. et al. De novo assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in Lilium lancifolium . Mol Biol Rep 41, 8231–8245 (2014). https://doi.org/10.1007/s11033-014-3725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3725-1

Keywords

Navigation