Skip to main content
Log in

Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Aechmea fasciata belongs to the Bromeliaceae. In cultivation of bromeliads, flower-induction by ethylene and the derivative has been one item of conventional technology. Flower-induction of bromeliads by ethylene is age-dependent: adult plants bloom but juvenile plants not. To study age-dependent flower transition induced by ethylene in bromeliads, we treated juvenile and adult plants with ethrel, then constructed two transcriptomes using short read sequencing technology (Illumina). 52,396,972 sequencing raw reads totaling 4.72 Gbp of the juvenile plant sample and 52,560,902 sequencing raw reads totaling 4.73 Gbp of the adult plant sample were assembled de novo into 71,445 unique sequences (i.e. All-Unigene) with a mean length of 461 bp and a total assembly size of 47.9 Mbp. Of all, 35,483 unigenes had significant hits with sequences in the Nr database, 24,409 showed significant similarities to known proteins in the Swiss-Prot database. 13,585 and 18,747 unigenes had significant similarity to existing sequences in the Kyoto encyclopedia of genes and genomes (KEGG) and cluster of orthologous group (COG) databases, respectively. Between two transcriptomes, we found 10,036 differentially expressed genes. Among them, we identified and analyzed 60 gene fragments related to ethylene signaling pathway and flowering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. PNAS 104(15):6484–6489

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50(6):1007–1019

    Article  PubMed  CAS  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker J, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. PNAS 107:14502–14507

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Li X, Satya C, Hugo G, Huiqiong L, Haitao C, Run C, Jianru Z, Xiaoyan T, Xin L, Hongwei G, Jian-Min Z (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Semin Cell Dev Biol 19:560–573

    Article  PubMed  CAS  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550

    Article  PubMed  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 138–148

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484

    PubMed  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Karim MR, Hirota A, Kwiatkowska D, Tasaka M, Aida M (2009) A role for Arabidopsis PUCHI in floral meristem identity and bract suppression. Plant Cell 21:1360–1372

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55:821–831

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. PNAS 102:9412–9417

    Article  PubMed  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2009) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed  Google Scholar 

  • Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23(7):2536–2552

    Article  PubMed  CAS  Google Scholar 

  • Mekers O, De Proft M, Jacobs L (1983) Prevention of unwanted flowering by growth regulating chemicals. Acta Horticulturae 137:217–223

    Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  • Mozley D, Thomas B (1995) Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh Landsberg erecta. J Exp Bot 46:173–179

    Article  CAS  Google Scholar 

  • Mutasa GE, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21(10):3008–3025

    Article  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′/3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. PNAS 103:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P (2006) The exoribonuclease XRN4 is a compo-nent of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    Article  PubMed  CAS  Google Scholar 

  • Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. PNAS 95:5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Turnbull CG, Sinclair ER, Anderson KL, Nissen RJ, Shorter AJ, Lanham TE (1999) Routes of ethephon uptake in pineapple (Ananas comosus) and reasons for failure of flower induction. J Plant Growth Regul 18(4):145–152

    Article  PubMed  CAS  Google Scholar 

  • Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009a) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  PubMed  CAS  Google Scholar 

  • Wang RH, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC (2009b) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang RH, Maria CA, Coral V, Sara B, Ming L, Yan B, Christiane K, Rosa C, George C (2011) Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpine. Plant Cell 23:1307–1321

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed  CAS  Google Scholar 

  • NCBI GenBank All Databases (http://www.ncbi.nlm.nih.gov/sites/gquery)

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  PubMed  CAS  Google Scholar 

  • Yant L, Mathieu J, Thanh TD, Felix O, Christa L, Heike W, Chen X, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–W297

    Article  PubMed  CAS  Google Scholar 

  • Yuri T, Jose′ RB (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J Exp Bot 57(14):3953–3960

    Article  Google Scholar 

  • Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. PNAS 106:21431–21436

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, Taiko KT, Li W, Zhang X, Yu Q, Dong Z, Chen WQ, Motoaki S, Zhou JM, Guo H (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. PNAS 108:12539–12544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lai Qixian and Prof. Li Kelie for access to their collections. This work was supported by the Natural Scientific Foundation in China (30760148) and the Natural Scientific Foundation in Hainan Province (808191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xu.

Additional information

Zhiying Li and Hanqing Cong contributed equally to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cong, H., Li, Z. & Xu, L. Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis. Plant Growth Regul 69, 247–257 (2013). https://doi.org/10.1007/s10725-012-9767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9767-2

Keywords

Navigation