Skip to main content
Log in

Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study was carried out to preliminarily reveal the underlying mechanisms of the co-culture system between porcine muscle satellite cells (SCs) and stromal-vascular cells (SVs). The two cell types were co-cultured to assess both proliferation and differentiation. Desmin and Pref-1 immunofluorescence staining technique were taken to identify the two types of isolated cells. The expression of specific marker genes Myogenin was up-regulated in SCs (P < 0.05) and the differentiation of SCs could be promoted when co-cultured with preadipocytes compared with the single-cultured control, while expression of c/EBPβ in SVs was down-regulated (P < 0.05) and the differentiation of preadipocytes could be inhibited. Furthermore, secretion of myokine IL-15 was markedly increased, as well as its gene and protein expression levels in co-culture supernatants. However, the secretion of adipokine leptin was significantly decreased. These findings demonstrate that myokines like IL-15 could facilitate the SCs’ differentiation while inhibit the SVs differentiation, and act as an important regulator of co-culture between muscle cells and adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cameron ND, Enser M, Nute GR, Whittington FM, Penman JC, Fisken AC, Perry AM, Wood JD (2000) Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci 55:187–195

    Article  PubMed  CAS  Google Scholar 

  2. Huff-Lonergan E, Baas TJ, Malek M, Dekkers JCM, Prusa K, Rothschild MF (2002) Correlations among selected pork quality traits. J Anim Sci 80:617–627

    PubMed  CAS  Google Scholar 

  3. Goodpaster BH, Wolf D (2004) Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes 5:219–226

    Article  PubMed  Google Scholar 

  4. Mendez JJ (2011) Investigations into the origin of muscle satellite cells and the myogenic capacity of limb endothelial cells. Doctoral Dissertations. Paper AAI3485428

  5. Nielsen AR, Hojman P, Erikstrup C, Fischer CP, Plomgaard P, Mounier R, Mortensen OH, Broholm C, Taudorf S, Krogh-Madsen R, Lindegaard B, Petersen AM, Gehl J, Pedersen BK (2008) Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab 93:4486–4493

    Article  PubMed  CAS  Google Scholar 

  6. Pedersen BK (2009) The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J Physiol 587:5559–5568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez B, Carbo N, Lopez-Soriano J, Drivdahl RH, Busquets S, Lόpez-Soriano FJ, Argilés JM, Quinn LS (2002) Effects of interleukin-15 (IL-15) on adipose tissue mass in rodent obesity models: evidence for direct IL-15 action on adipose tissue. Biochim Biophys Acta 1570:33–37

    Article  PubMed  CAS  Google Scholar 

  9. Quinn LBS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29:449–457

    Article  PubMed  CAS  Google Scholar 

  10. Quinn L (2008) Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci 86:E75–E83

    Article  PubMed  CAS  Google Scholar 

  11. Argiles JM, Lopez-Soriano FJ, Busquets S (2009) Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug Discov Today 14:208–213

    Article  PubMed  CAS  Google Scholar 

  12. Bilski J, Mazur-Bialy A, Wierdak M, Brzozowski T (2013) The impact of physical activity and nutrition on inflammatory bowel disease: the potential role of cross talk between adipose tissue and skeletal muscle. J Physiol Pharmacol 64:143–155

    PubMed  CAS  Google Scholar 

  13. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  PubMed  CAS  Google Scholar 

  15. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Poulos SP, Dodson MV, Hausman GJ (2010) Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med 235:1185–1193

    Article  CAS  Google Scholar 

  17. Kokta T, Dodson M, Gertler A, Hill R (2004) Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol 27:303–331

    Article  PubMed  CAS  Google Scholar 

  18. Hembree JR, Hathaway M, Dayton W (1991) Isolation and culture of fetal porcine myogenic cells and the effect of insulin, IGF-I, and sera on protein turnover in porcine myotube cultures. J Anim Sci 69:3241–3250

    PubMed  CAS  Google Scholar 

  19. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    Article  PubMed  CAS  Google Scholar 

  21. Tsoupri E, Capetanaki Y (2013) Μyospryn: a multifunctional desmin-associated protein. Histochem Cell Biol 140:55–63

    Article  PubMed  CAS  Google Scholar 

  22. Shan T, Liu W, Kuang S (2013) Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J 27:277–287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Dietze D, Koenen M, Röhrig K, Horikoshi H, Hauner H, Eckel J (2002) Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 51:2369–2376

    Article  PubMed  CAS  Google Scholar 

  24. Choi SH, Chung KY, Johnson BJ, Go GW, Kim KH, Choi CW, Smith SB (2012) Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J Nutr Biochem 24:539–543

    Article  PubMed  Google Scholar 

  25. Honda R, Matsuura K, Fukumatsu Y, Kawano T, Okamura H (1994) In-vitro enhancement of mouse embryonic development by co-culture with peritoneal macrophages. Hum Reprod 9:692–696

    PubMed  CAS  Google Scholar 

  26. Suganami T, Nishida J, Ogawa Y (2005) A Paracrine Loop Between Adipocytes and Macrophages Aggravates Inflammatory Changes Role of Free Fatty Acids and Tumor Necrosis Factor α. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  PubMed  CAS  Google Scholar 

  27. Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA (2012) Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS ONE 7:e29896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Yan J, Gan L, Yang H, Sun C (2012) The proliferation and differentiation characteristics of co-cultured porcine preadipocytes and muscle satellite cells in vitro. Mol Biol Rep 40:3197–3202

    Article  PubMed  Google Scholar 

  29. House JS, Zhu S, Ranjan R, Linder K, Smart RC (2010) C/EBPα and C/EBPβ are required for sebocyte differentiation and stratified squamous differentiation in adult mouse skin. PLoS ONE 5:e9837

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yim M-J, Hosokawa M, Mizushina Y, Yoshida H, Saito Y, Miyashita K (2011) Suppressive effects of amarouciaxanthin a on 3T3-L1 adipocyte differentiation through down-regulation of PPARγ and C/EBPα mRNA expression. J Agric Food Chem 59:1646–1652

    Article  PubMed  CAS  Google Scholar 

  31. Ishibashi J, Firtina Z, Rajakumari S, Wood KH, Conroe HM, Steger DJ, Seale P (2012) An Evi1-C/EBPβ complex controls peroxisome proliferator-activated receptor γ2 gene expression to initiate white fat cell differentiation. Mol Cell Biol 32:2289–2299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Dodson M, Vierck J, Hossner K, Byrne K, McNamara J (1997) The development and utility of a defined muscle and fat co-culture system. Tissue Cell 29:517–524

    Article  PubMed  CAS  Google Scholar 

  33. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  34. Coppari R, Bjørbæk C (2012) Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov 11:692–708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Huang H, Kong D, Byun KH, Ye C, Koda S, Lee DH, Oh BC, Lee SW, Lee B, Zabolotny JM, Kim MS, Bjørbæk C, Lowell BB, Kim YB (2012) Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nat Neurosci 15:1391–1398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ratajczak M, Kucia M, Jadczyk T, Greco N, Wojakowski W, Tendera M, Ratajczak J (2011) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies&quest. Leukemia 26:1166–1173

    Article  PubMed  Google Scholar 

  37. Lennartsson J, Rönnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649

    Article  PubMed  CAS  Google Scholar 

  38. Aoi W, Sakuma K (2013) Skeletal muscle: novel and intriguing characteristics as a secretory organ. Biodiscovery 7:2

  39. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes nuclear factor-κB activation by TNF-α is obligatory. Diabetes 51:1319–1336

    Article  PubMed  CAS  Google Scholar 

  40. Velleman SG, Shin J, Li X, Song Y (2012) Review: the skeletal muscle extracellular matrix: possible roles in the regulation of muscle development and growth. J Anim Sci 92:1–10

    CAS  Google Scholar 

  41. Warne J (2003) Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol 177:351–355

    Article  PubMed  CAS  Google Scholar 

  42. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by National Basic Research Program of China (2012CB124704, 2013CB127305), National Nature Science Foundation of China (31372325, 31110103909), and the Project of Institute of Subtropical Agriculture, the Chinese Academy of Sciences (ISACX-LYQY-QN-1104).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengna Li or Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, F., Lin, B. et al. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol Biol Rep 41, 7543–7553 (2014). https://doi.org/10.1007/s11033-014-3646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3646-z

Keywords

Navigation