Skip to main content

Advertisement

Log in

Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Augustin H, Partridge L (2009) Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta 1790:1084–1094

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger CF, von Maltzahn J, Rudnicki MA (2010) Extrinsic regulation of satellite cell specification. Stem Cell Res Ther 1:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA (2013) Fibronectin regulates wnt7a signaling and satellite cell expansion. Cell Stem Cell 12:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosnakovski D, Xu ZH, Li W, Thet S, Cleaver O, Perlingeiro RCR, Kyba M (2008) Prospective isolation of skeletal muscle stem cells with a pax7 reporter. Stem Cells 26:3194–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem cell reviews. 3:226–237

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  CAS  PubMed  Google Scholar 

  • Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Rando TA (2006) The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis (vol 3, pg 397, 2002). Dev Cell 10:273

    Article  CAS  Google Scholar 

  • Fukada S, Ma YR, Ohtani T, Watanabe Y, Murakami S, Yamaguchi M (2013) Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 4:1–16

    Article  Google Scholar 

  • Gao Y, Pu Y, Wang D, Hou L, Guan W, Ma Y (2012) Isolation and biological characterization of chicken amnion epithelial cells. Eur J Histochem 56:1–33

    Article  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harthan LB, McFarland DC, Velleman SG (2014) The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1. Poult Sci 93:174–186

    Article  CAS  PubMed  Google Scholar 

  • Kanisicak O, Mendez JJ, Yamamoto S, Yamamoto M, Goldhamer DJ (2009) Progenitors of skeletal muscle satellite cells express the muscle determination gene, myod. Dev Biol 332:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JA, Shon YH, Lim JO, Yoo JJ, Shin HI, Park EK (2013) Myod mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther 4:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJC, Fernandez A (1998) The muscle regulatory factors myod and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagha M, Sato T, Bajard L, Daubas P, Esner A, Montarras D, Relaix F, Buckingham M (2008) Regulation of skeletal muscle stem cell behavior by pax3 and pax7. Cold Spring Harb Symp Quant Biol 73:307–315

    Article  CAS  PubMed  Google Scholar 

  • Leung DG, Wagner KR (2013) Therapeutic advances in muscular dystrophy. Ann Neurol 74:404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megeney LA, Perry RLS, Lecouter JE, Rudnicki MA (1996) Bfgf and lif signaling activates stat3 in proliferating myoblasts. Dev Genet 19:139–145

    Article  CAS  PubMed  Google Scholar 

  • Meregalli M, Farini A, Sitzia C, Torrente Y (2014) Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 5:148

    Article  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  • Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell DJ, McFarland DC, Cowieson AJ, Muir WI, Velleman SG (2013) The effect of nutritional status on myogenic satellite cell proliferation and differentiation. Poult Sci 92:2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA (2015) Inhibition of jak-stat signaling stimulates adult satellite cell function (vol 20, pg 1174, 2014). Nat Med 21:414

    Article  CAS  PubMed  Google Scholar 

  • Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an em and radioautographic study. J Exp Zool 206:451–456

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  • Smolina N, Kostareva A, Bruton J, Karpushev A, Sjoberg G, Sejersen T (2015) Primary murine myotubes as a model for investigating muscular dystrophy.Biomed Res Int 2:1–12 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilschut KJ, Ling VB, Bernstein HS (2012) Concise review: stem cell therapy for muscular dystrophies. Stem Cell Transl Med 1:833–842

    Article  CAS  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates a mechanism for self-renewal? J Cell Biol 166:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by The Agricultural Science and Technology Innovation Program (ASTIP) (cxgc-ias-01), the China Postdoctoral Science Foundation funded Project (2015M571182), the project National Infrastructure of Animal Germplasm Resources (2014 year).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjie Liu or Weijun Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, H., Wang, K. et al. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells. Cell Tissue Bank 18, 513–525 (2017). https://doi.org/10.1007/s10561-017-9614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9614-9

Keywords

Navigation