Skip to main content
Log in

Oligo-microarray analysis and identification of stress-immune response genes from manila clam (Ruditapes philippinarum) exposure to heat and cold stresses

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Thermal stress regulates the complex system of gene expression and downstream biochemical and physiological responses in aquatic species. To identify genes involved in heat stress responses in manila clam (Ruditapes philippinarum), microarray analysis was conducted using clam transcriptome generated by pyrosequencing of cDNA library. Manila clams were exposed to heat (30 ± 1 °C) and cold (4 ± 1 °C) stresses and compared with control animals (18 ± 1 °C). Heat stressed animals have changed greater number of transcripts (8,306) than cold stress (7,573). Results of both heat and cold exposure has shown that over 2-fold up-regulated or down regulated (>2-or <2-fold) transcripts were higher at 24 h than at 6 h. It suggests that silent and constitutive express genes can activate at critical stage of thermal stress which could be between 6 and 24 h post stresses. We identified wide range of stress-immune response genes such as transcription factors, heat shock proteins, antioxidant and detoxification enzymes, inflammatory and apoptosis related genes, cell adhesion molecules, cytokines, and IFN regulatory proteins. Histological results revealed that non-specific cellular alterations such as lesions, hypertrophy, and necrosis in stressed gills could be due to decrease of gas exchange rate which may cause hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hochachka PW, Somero GN (2002) Biochemical adaptation: Mechanism and process in physiological evolution. Oxford University Press, United Kingdom (ISBN 0-195-11702-6)

  2. Cheney DP, MacDonald BF, Elston RA (2000) Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. J Shellfish Res 18:456–473

    Google Scholar 

  3. Huvet A, Herpin A, Dégremont L, Labreuche Y, Samain JF, Cunningham C (2004) The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343(1):211–220

    Article  CAS  PubMed  Google Scholar 

  4. Lang RP, Bayne CJ, Camara MD, Cunningham C, Jenny MJ, Langdon CJ (2009) Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Mar Biotechnol 11(5):650–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Malham SK, Cotter E, O’Keeffe S, Lynch S, Culloty SC, King JW et al (2009) Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrient on health and survival. Aquaculture 287:128–138

    Article  CAS  Google Scholar 

  6. Incze LS, Lutz RA, Watling L (1980) Relationships between effects of environmental temperature and seston on growth and mortality of Mytilus edulis in a temperate northern estuary. Mar Biol 57(3):147–156

    Article  Google Scholar 

  7. Mallet AL, Carver CEA, Freeman KR (1990) Summer mortality of the blue mussel in eastern Canada: spatial, temporal, stock and age variation. Mar Ecol Prog Ser 67:35–41

    Article  Google Scholar 

  8. Myrand B, Gaudreault J (1995) Summer mortality of blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (southern Gulf of St. Lawrence Canada). J Shellfish Res 14:395–404

    Google Scholar 

  9. Tremblay R, Myrand B, Sevigny JM, Blier P, Guderley H (1998) Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J Exp Mar Biol Ecol 221(1):27–58

    Article  Google Scholar 

  10. Vandepeer M (2006) Abalone aquaculture subprogram: preventing summer mortality of abalone in aquaculture systems by understanding interactions between nutrition and water temperature. South Australian Research and Development Institute, Adelaide, 85 pp SARDI Publication Number RD02/0035-2.

  11. Higano J, Hirano K, Kitahara S, Matsuda M, Mizuta K, Fujii A, Shinagawa A (2009) Manila clam and Pacific oyster culture in Isahaya bay for the sustainable production in stressful environment. Bull Fish Res Agen 29:39–47

    Google Scholar 

  12. Pernet F, Barret J, Gall PL, Corporeau C, Degremont L, Lagarde F, Pepin JF, Keck N (2012) Mass mortalities of Pacific oysters Crassostreagigas reflect infectious diseases and vary with farming practices in the Mediterranean Thau lagoon, France. Aquacult Environ Interact 2:215–237

    Article  Google Scholar 

  13. Meistertzheim AL, Tanguy A, Moraga D, Thébault MT (2007) Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 274(24):6392–6402

    Article  CAS  PubMed  Google Scholar 

  14. Truebano M, Burns G, Thorne MAS, Hillyard G, Peck LS, Skibinski DOF, Clark MS (2010) Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. J Exp Mar Biol Ecol 391:65–72

    Article  CAS  Google Scholar 

  15. FAO. (2012) World review of fisheries and aquaculture. http://www.fao.org/docrep/016/i2727e/i2727e01.pdf. Accessed August 2012

  16. Moreira R, Balseiro P, Planas JV, Fuste B, Beltran S, Novoa B, Figueras A (2012) Transcriptomics of in vitro immune-stimulated hemocytes from the manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS One 7:e35009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brulle F, Jeffroy F, Madec S, Nicolas JL, Paillard C (2012) Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge. Dev Comp Immunol 38(2):368–376

    Article  CAS  PubMed  Google Scholar 

  18. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  19. Verducci JS, Melfi VF, Lin S, Wang Z, Roy S, Sen CK (2006) Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol Genomics 25(3):355–363

    Article  CAS  PubMed  Google Scholar 

  20. Evdonin AL, Guzhova IV, Margulis BA, Medvedea ND (2006) Extracelluar heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett 580:6674–6678

    Article  CAS  PubMed  Google Scholar 

  21. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  22. Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C et al (2011) Transcriptome sequencing and microarray development for the manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genom 12:234

    Article  CAS  Google Scholar 

  23. Piano A, Franzellitti S, Tinti F, Fabbri E (2005) Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361:119–126

    Article  CAS  PubMed  Google Scholar 

  24. Zhang G, Fang X, Li L, Luo R, Xu F, Yang P et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  25. Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    Article  PubMed  Google Scholar 

  26. Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  27. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death release heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kB pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  28. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for the heat shock protein gp96. Nat Immunol 1(2):151–155

    Article  CAS  PubMed  Google Scholar 

  29. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins and immunoglobulin superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  CAS  PubMed  Google Scholar 

  30. Fabbri E, Valbonesi P, Franzellitti S (2008) HSP expressions in bivalves. ISJ 5:135–161

    Google Scholar 

  31. Bachtell RK, Tsivkovskaia NO, Ryabinin AE (2003) Identification of temperature-sensitive neural circuits in mice using c-Fos expression mapping. Brain Res 960:157–164

    Article  CAS  PubMed  Google Scholar 

  32. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73:1491–1530

    Article  Google Scholar 

  33. Neiboer E, Richardson DHS (1980) The replacement of nondescript term “heavy metals” by a biologically and chemically significant classification of metals ion. Environ Poll 1(1):3–26

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Research Foundation (NRF) program of Ministry of Land, Transportation and Maritime Affairs, Republic of Korea under project title of the studies on the manila clam (Ruditapes philippinarum) internal defense system (NRF- 2011-0022671). Udeni Menike was also financially supported by above NRF research grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jehee Lee or Mahanama De Zoysa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menike, U., Lee, Y., Oh, C. et al. Oligo-microarray analysis and identification of stress-immune response genes from manila clam (Ruditapes philippinarum) exposure to heat and cold stresses. Mol Biol Rep 41, 6457–6473 (2014). https://doi.org/10.1007/s11033-014-3529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3529-3

Keywords

Navigation