Skip to main content
Log in

Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ambient temperature plays a large role in insect growth, development and even their distribution. The elucidation of the associated molecular mechanism that underlies the effect of constant high temperature will enables us to further understand the stress responses. We constructed four digital gene expression libraries from the fat body of female and male Bombyx mori. Differential gene expression was analyzed after constant high temperature treatment. The results showed that there were significant changes to the gene expression in the fat body after heat treatment, especially in binding, catalytic, cellular and metabolic processes. Constant high temperature may induce more traditional cryoprotectants, such as glycerol, glycogen, sorbitol and lipids, to protect cells from damage, and induce heat oxidative stress in conjunction with the heat shock proteins. The data also indicated a difference between males and females. The heat shock protein-related genes were up-regulated in both sexes but the expression of Hsp25.4 and DnaJ5 were down-regulated in the male fat body of B. mori. This is the first report of such a result. Constant high temperature also affected the expression of other functional genes and differences were observed between male and female fat bodies in the expression of RPS2, RPL37A and MREL. These findings provide abundant data on the effect of high temperature on insects at the molecular level. The data will also be beneficial to the study of differences between the sexes, manifested in variations in gene expression under high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395. doi:10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

  2. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148. doi:10.1038/nature02121

    Article  CAS  PubMed  Google Scholar 

  3. Bertioli DJ, Schlichter UH, Adams MJ, Burrows PR, Steinbiss HH, Antoniw JF (1995) An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res 23(21):4520–4523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ma CS, Hau B, Poehling HM (2003) Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomol Exp Appl 110(1):65–71. doi:10.1111/j.0013-8703.2004.00123.x

    Article  Google Scholar 

  5. Yamamoto K, Nagaoka S, Banno Y, Aso Y (2009) Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori. Comp Biochem Physiol Toxicol Pharmacol 149(4):461–467. doi:10.1016/j.cbpc.2008.10.108

    Article  Google Scholar 

  6. Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100. doi:10.1146/annurev.ento.50.071803.130456

    Article  CAS  PubMed  Google Scholar 

  7. Blossman-Myer B, Burggren WW (2010) The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor. Comp Biochem Physiol A Mol Integr Physiol 155(2):259–263. doi:10.1016/j.cbpa.2009.11.007

    Article  PubMed  Google Scholar 

  8. Reumer A, Van Loy T, Clynen E, Schoofs L (2008) How functional genomics and genetics complements insect endocrinology. Gen Comp Endocrinol 155(1):22–30

    Article  CAS  PubMed  Google Scholar 

  9. Andersen JP, Schwartz A, Gramsbergen JB, Loeschcke V (2006) Dopamine levels in the mosquito Aedes aegypti during adult development, following blood feeding and in response to heat stress. J Insect Physiol 52(11–12):1163–1170. doi:10.1016/j.jinsphys.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  10. Bond U (2006) Stressed out! Effects of environmental stress on mRNA metabolism. FEMS Yeast Res 6(2):160–170. doi:10.1111/j.1567-1364.2006.00032.x

    Article  CAS  PubMed  Google Scholar 

  11. Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7(11):862–874. doi:10.1038/nri2194

    Article  CAS  PubMed  Google Scholar 

  12. Morishima I, Yamano Y, Inoue K, Matsuo N (1997) Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett 419(1):83–86

    Article  CAS  PubMed  Google Scholar 

  13. Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87(3):356–365. doi:10.1016/j.ygeno.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  14. Stillman J, Somero G (1996) Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J Exp Biol 199(Pt 8):1845–1855

    PubMed  Google Scholar 

  15. Neven LG (2000) Physiological responses of insects to heat. Postharvest Biol Technol 21(1):103–111. doi:10.1016/S0925-5214(00)00169-1

    Article  CAS  Google Scholar 

  16. Zhang Y, Huang J, Jia S, Liu W, Li M, Wang S, Miao X, Xiao H, Huang Y (2007) SAGE tag based cDNA microarray analysis during larval to pupal development and isolation of novel cDNAs in Bombyx mori. Genomics 90(3):372–379. doi:10.1016/j.ygeno.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Nesbitt MJ, Moerman DG, Chen N (2010) Identifying novel genes in C. elegans using SAGE tags. BMC Mol Biol 11:96. doi:10.1186/1471-2199-11-96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wu ZJ, Meyer CA, Choudhury S, Shipitsin M, Maruyama R, Bessarabova M, Nikolskaya T, Sukumar S, Schwartzman A, Liu JS, Polyak K, Liu XS (2010) Gene expression profiling of human breast tissue samples using SAGE-Seq. Genome Res 20(12):1730–1739. doi:10.1101/gr.108217.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99(3):160–168. doi:10.1016/j.ygeno.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  20. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bao ZZ, Zhang CX, Xu SQ, Zhou QK, Wei GB, Wang H, Liu T, Jin X, SIMA YH (2012) Analysis on expressional difference of silkworm genes before and after high temperature treatment by using serial analysis of gene expression. Sci Seric 38(3):456–467

    CAS  Google Scholar 

  22. Chen S, Jiang J, Li H, Liu G (2012) The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE. Gene 504(2):203–212. doi:10.1016/j.gene.2012.05.023

    Article  CAS  PubMed  Google Scholar 

  23. t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36(21):e141. doi:10.1093/nar/gkn705

    Article  Google Scholar 

  24. Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19(10):1825–1835. doi:10.1101/gr.094482.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    CAS  PubMed  Google Scholar 

  26. Kim KI, van de Wiel MA (2008) Effects of dependence in high-dimensional multiple testing problems. BMC Bioinformatics 9:114. doi:10.1186/1471-2105-9-114

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937–1940. doi:10.1126/science.1102210

    Article  PubMed  Google Scholar 

  28. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–W297. doi:10.1093/nar/gkl031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li Y, Xu Z, Li H, Xiong Y, Zuo B (2010) Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 6(4):350–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pandey R, Guru RK, Mount DW (2004) Pathway miner: extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 20(13):2156–2158. doi:10.1093/bioinformatics/bth215

    Article  CAS  PubMed  Google Scholar 

  31. Henle KJ, Warters RL (1982) Heat protection by glycerol in vitro. Cancer Res 42(6):2171–2176

    CAS  PubMed  Google Scholar 

  32. Hallman GJ, Denlinger DL (1998) Temperature sensitivity in insects and application in integrated pest management, Westview studies in insect biology. Westview Press, Boulder, pp 55–95

  33. Wolfe GR, Hendrix DL, Salvucci ME (1998) A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. J Insect Physiol 44(7–8):597–603. doi:10.1016/S0022-1910(98)00035-3

    Article  CAS  PubMed  Google Scholar 

  34. Salvucci ME, Stecher DS, Henneberry TJ (2000) Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. J Therm Biol 25(5):363–371. doi:10.1016/S0306-4565(99)00108-4

    Article  CAS  PubMed  Google Scholar 

  35. Downer RGH, Kallapur VL (1981) Temperature-induced changes in lipid-composition and transition-temperature of flight-muscle mitochondria of Schistocerca gregaria. J Therm Biol 6(4):189–194. doi:10.1016/0306-4565(81)90005-X

    Article  CAS  Google Scholar 

  36. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12(1):75–92. doi:10.1111/j.1461-0248.2008.01258.x

    Article  PubMed  Google Scholar 

  37. Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38(8):796–804. doi:10.1016/j.ibmb.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  38. Cui YD, Du YZ, Lu MX, Qiang CK (2011) Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to thermal stress. J Therm Biol 36(5):292–297. doi:10.1016/j.jtherbio.2011.04.003

    Article  Google Scholar 

  39. Ju RT, Wei HP, Wang F, Zhou XH, Li B (2014) Anaerobic respiration and antioxidant responses of Corythucha ciliata (Say) adults to heat-induced oxidative stress under laboratory and field conditions. Cell Stress Chaperones 19(2):255–262. doi:10.1007/s12192-013-0451-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D (2011) Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp Biochem Physiol A Mol Integr Physiol 158(2):229–234. doi:10.1016/j.cbpa.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Moghaddam SH, Du X, Zhong BX, Chen YY (2012) Comparative analysis on the expression of inducible HSPs in the silkworm, Bombyx mori. Mol Biol Rep 39(4):3915–3923. doi:10.1007/s11033-011-1170-y

    Article  CAS  PubMed  Google Scholar 

  42. Li ZW, Li X, Yu QY, Xiang ZH, Kishino H, Zhang Z (2009) The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evol Biol 9:215. doi:10.1186/1471-2148-9-215

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sorensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42(12):1123–1129. doi:10.1016/j.exger.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Carranco R, Almoguera C, Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 272(43):27470–27475

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Fang Y, Bao Z, Jin X, Zhu W, Wang L, Liu T, Ji H, Xu S, Sima Y (2014) Identification of a Bombyx mori gene encoding small heat shock protein BmHsp27.4 expressed in response to high-temperature stress. Gene 538(1):56–62. doi:10.1016/j.gene.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  46. Sakano D, Li B, Xia Q, Yamamoto K, Banno Y, Fujii H, Aso Y (2006) Genes encoding small heat shock proteins of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 70(10):2443–2450

    Article  CAS  PubMed  Google Scholar 

  47. Sheng Q, Xia J, Nie Z, Zhang Y (2010) Cloning, expression, and cell localization of a novel small heat shock protein gene: BmHSP25.4. Appl Biochem Biotechnol 162(5):1297–1305. doi:10.1007/s12010-009-8890-7

    Article  CAS  PubMed  Google Scholar 

  48. Wu P, Wang X, Qin GX, Liu T, Jiang YF, Li MW, Guo XJ (2011) Microarray analysis of the gene expression profile in the midgut of silkworm infected with cytoplasmic polyhedrosis virus. Mol Biol Rep 38(1):333–341. doi:10.1007/s11033-010-0112-4

    Article  CAS  PubMed  Google Scholar 

  49. Wang LL, Lin HJ, Wang Y, Li Z, Zhou ZY (2012) Chromosomal localization and expressional profile of heat shock protein 70 family genes in silkworm, Bombyx mori. Sci Seric 38(4):0617–0623

    Google Scholar 

  50. Kelley WL (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 23(6):222–227

    Article  CAS  PubMed  Google Scholar 

  51. Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci USA 95(11):6108–6113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Hunter T, Poon RY (1997) Cdc37: a protein kinase chaperone? Trends Cell Biol 7(4):157–161. doi:10.1016/S0962-8924(97)01027-1

    Article  CAS  PubMed  Google Scholar 

  53. Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem 274(1–2):171–179

    Article  CAS  PubMed  Google Scholar 

  54. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171. doi:10.1146/annurev.cellbio.16.1.145

    Article  CAS  PubMed  Google Scholar 

  55. Miyagawa K, Ohashi M, Yamashita S, Kojima M, Sato K, Ueda R, Dohi Y (2007) Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J Hypertens 25(2):415–421. doi:10.1097/HJH.0b013e3280115b96

    Article  CAS  PubMed  Google Scholar 

  56. Telang A, Buck NA, Wheeler DE (2002) Response of storage protein levels to variation in dietary protein levels. J Insect Physiol 48(11):1021–1029

    Article  CAS  PubMed  Google Scholar 

  57. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352(2):305–310. doi:10.1016/j.bbrc.2006.11.030

    Article  CAS  PubMed  Google Scholar 

  58. Swiercz R, Cheng D, Kim D, Bedford MT (2007) Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem 282(23):16917–16923. doi:10.1074/jbc.M609778200

    Article  CAS  PubMed  Google Scholar 

  59. Bettencourt R, Terenius O, Faye I (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol Biol 11(3):267–271

    Article  CAS  PubMed  Google Scholar 

  60. Tornow J, Santangelo GM (1994) Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed. Curr Genet 25(6):480–487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the earmarked fund for China Agriculture Research System (CARS; Grant No. CARS-22), the National High-Tech R&D Program of China (863 Program; Grant No. 2011AA100306) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghu Sima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 Gene-specific primers for this study. (DOC 45 kb)

11033_2014_3481_MOESM2_ESM.tif

Supplementary file 2 Gene-pathway network graph of the male B. mori. The relativity of pathways, based on the significance of input gene enrichment in the pathway. We used all the Up/Down-regulated gene data in the MAS software. (TIFF 5870 kb)

Supplementary file 3 Gene-pathway network graph of the female B. mori. Similar to the male. (TIFF 9004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fang, Y., Wang, L. et al. Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes. Mol Biol Rep 41, 6039–6049 (2014). https://doi.org/10.1007/s11033-014-3481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3481-2

Keywords

Navigation