Skip to main content
Log in

Gene expression profiles of arabidopsis under the stress of methyl viologen: a microarray analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Methyl viologen (MV) is the main ingredient of Paraquat. It is little known about how plants respond to this compound. To understand the mode of MV action and molecular mechanism of plant response, we performed experiments of microarray on Arabidopsis. In MV treated seedling, approximately 6 % genes were altered at mRNA levels, including 818 genes increased, whereas 1,440 genes decreased. Studies of these genes expression patterns provided some new information on the reaction process of plant after the treatment with MV. These included signaling molecules for MV response and reactive oxygen species formation, enzymes required for secondary metabolism and, cell wall maintenance and strategy of photostasis balance. The expression kinetics of the genes induced by MV will provides useful information for the abiotic stress defense mechanism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90(4):1267–1270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Halliwell B, Gutteridge JMC (1989) Reactions of the superoxide radical. In: Free radicals in biology and medicine. Free radicals in biology and medicine. Clarendon press, Oxford

  3. Hartel H, Haseloff RF, Ebert B (1992) Free radical formation in chloroplasts: methyl violigen action. J photochem photobiol 12:375–387

    Article  Google Scholar 

  4. Hart JJ, Di Tomaso JM (1994) Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed science 277–284

  5. Szigeti Z (2005) Mechanism of paraquat resistance–from the antioxidant enzymes to the transporters. Acta biol szeged 49:177–179

    Google Scholar 

  6. Song XS, Tiao CL, Shi K, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2006) The response of antioxidant enzymes in cellular organelles in cucumber (Cucumis sativus L.) leaves to methyl viologen-induced photo-oxidative stress. Plant Growth Regul 49(1):85–93

    Article  CAS  Google Scholar 

  7. Zeng Q, Liu S, Guo Y, Zheng X (1996) Effect of methyl viologen on physiology and biochemical of plant cells. J Appl Environ Biol 2:405–407

    Google Scholar 

  8. Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41(1):31–42

    Article  PubMed  CAS  Google Scholar 

  9. Lee SC, Choi HW, Hwang IS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224(5):1209–1225

    Article  PubMed  CAS  Google Scholar 

  10. Xi J, Xu P, Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J 69(5):782–791

    Article  PubMed  CAS  Google Scholar 

  11. LehtiShiu DM, Zou C, Shiu SH (2012) Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/pelle family. Springerlink, Recept-like Kinase Plants Signal Commun PlantS 13:1–22

    Article  Google Scholar 

  12. Li J, Mu J, Bai J, Fu F, Zou T, An F, Zhang J, Jing H, Wang Q, Li Z (2013) Paraquat resistant 1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol 162:470–483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Xu S, Wang L, Zhang B, Han B, Xie Y, Yang J, Zhong W, Chen H, Wang R, Wang N (2012) RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol 80(2):219–235

    Article  PubMed  CAS  Google Scholar 

  14. Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108(4):1505–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Peng RH, Xu RR, Fu XY, Xiong AS, Zhao W, Tian YS, Zhu B, Jin XF, Chen C, Han HJ (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. J Hazard Mater 189(1):19–26

    Article  PubMed  CAS  Google Scholar 

  16. Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    Article  PubMed  CAS  Google Scholar 

  17. MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol 99(3):872–878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132(2):530–543

    Article  PubMed  CAS  Google Scholar 

  19. Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in arabidopsis root meristems. Curr Biol 19(11):909–914

    Article  PubMed  CAS  Google Scholar 

  20. Wrzaczek M, Overmyer K, Kangasjärvi J (2010) Plant ROS and RNS: making plant science more radical than ever. Physiol Plant 138(4):357–359

    Article  PubMed  CAS  Google Scholar 

  21. Chen K, Du L, Chen Z (2003) Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol 53(1–2):61–74

    Article  PubMed  CAS  Google Scholar 

  22. Chen K, Fan B, Du L, Chen Z (2004) Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol Biol 56(2):271–283

    Article  PubMed  CAS  Google Scholar 

  23. Alessandra C, Giuseppina R, Riccardo A, Rodolfo F, Paraskevi T (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11(2):80–88

    Article  Google Scholar 

  24. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38(6):940–953

    Article  PubMed  CAS  Google Scholar 

  25. Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54(1):93–107

    Article  PubMed  CAS  Google Scholar 

  26. Kim KH, Alam I, Lee KW, Sharmin SA, Kwak S–S, Lee SY, Lee BH (2010) Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32(4):571–576

    Article  PubMed  CAS  Google Scholar 

  27. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW (2004) Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117(5):625–635

    Article  PubMed  CAS  Google Scholar 

  28. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  PubMed  CAS  Google Scholar 

  29. Kim MD, Kim YH, Kwon SY, Jang BY, Lee SY, Yun DJ, Cho JH, Kwak SS, Lee HS (2011) Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiol Biochem 49(8):891–897

    Article  PubMed  CAS  Google Scholar 

  30. Geiger D, Maierhofer T, AL-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4 (173):ra32

  31. Laloi C, Rayapuram N, Chartier Y, Grienenberger J-M, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci 98(24):14144–14149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  33. Vranová E, Atichartpongkul S, Villarroel R, Van Montagu M, Inzé D, Van Camp W (2002) Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci 99(16):10870–10875

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell Online 17(7):1866–1875

    Article  CAS  Google Scholar 

  35. Baier M, Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56(416):1449–1462

    Article  PubMed  CAS  Google Scholar 

  36. Desikan R, Soheila AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127(1):159–172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97(6):2940–2945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124

    Article  PubMed  Google Scholar 

  39. Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53(7):570–585

    Article  PubMed  CAS  Google Scholar 

  40. Licausi F, Giorgi F, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11(1):719–734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52(2):344–360

    Article  PubMed  CAS  Google Scholar 

  43. Roberto S, Anna S, Qimin C (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE -RESPONSE -FACTOR1. Genes Dev 12:3703–3714

    Article  Google Scholar 

  44. Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis. Plant Physiol 132(2):1020–1032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y (2007) Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. Plant J 50(6):1079–1092

    Article  PubMed  CAS  Google Scholar 

  46. Bancosİ S, Nomura T, Sato T, Molnár G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130(1):504–513

    Article  Google Scholar 

  47. Guengerich FP (2007) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    Article  PubMed  Google Scholar 

  48. Ohta D, Mizutani M (1998) Plant geraniol/nerol 10-hydroxylase and DNA coding therefore. USA Patent, No. 5753507

  49. Dewey R, Siminszky B, Bowen S, Gavilano L (2008) Alteration of tobacco alkaloid content throughmodification of specific cytochrome P450 genes. WO Patent 2,008,070,274

  50. Ahrens WH, Edwards MT (1994) Herbicide handbook. Weed Science Society of America Champaign, 7th Edition, pp. 177–179

  51. Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155(1):282–292

    Article  PubMed  PubMed Central  Google Scholar 

  52. Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metab Drug Interact 12:189–206

    CAS  Google Scholar 

  53. Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7(7):1039–1057

    Article  Google Scholar 

  54. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci 92(8):3254–3258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Kumar AM, Söll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol 122(1):49–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51(Suppl 1):475–485

    Article  PubMed  CAS  Google Scholar 

  57. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125(4):1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shimizu H, Peng L, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2008) CRR23/NdhL is a subunit of the chloroplast NAD (P) H dehydrogenase complex in Arabidopsis. Plant Cell Physiol 49(5):835–842

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Key Project Fund of the Shanghai Municipal Committee of Agriculture (No. 2011-1-8) and International Scientific and Technological Cooperation (2010DFA62320, 11230705900) and National Natural Science Foundation (31071486).The Key Project Fund of Science and Technology Committee of the Shanghai Minhang Municipality (2012MH059).Young Foundation of Shanghai Academy of Agricultural Science (2012-16, 2010-14). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Shi or Quan-Hong Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material Table 1 Sequences for all primer sets used for RT-PCR (DOC 32 kb)

11033_2014_3396_MOESM2_ESM.doc

Supplementary material Table 2 Significant genes up and down-regulated (≥ 2.0 folds and ≤ 10 % cv) in response to Methyl Viologen (DOC 2543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HJ., Peng, RH., Zhu, B. et al. Gene expression profiles of arabidopsis under the stress of methyl viologen: a microarray analysis. Mol Biol Rep 41, 7089–7102 (2014). https://doi.org/10.1007/s11033-014-3396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3396-y

Keywords

Navigation