Skip to main content
Log in

Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aims of present study were to investigate the effect of phthalate (2-ethylhexyl) ester (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) on Th1/Th2 balance signaling for interleukin 4 (IL-4) expression in splenic lymphocytes, and contribution of MEHP to any hypothesized changes in vitro. Primary splenic lymphocytes were exposed to DEHP/MEHP. ELISA and Western blotting were used to detect proteins. Confocal-microscopy was used to examine nuclear translocation. Nuclear factor of activated T cells (NFAT) DNA binding activity was examined by electrophoretic mobility-shift assay. DEHP significantly increased IL-4 and interferon gamma (IFN-γ) level, and reduced Th1/Th2 ratio (reflected by IFN-γ/IL-4) with 5 μg/L Concanavalin A (ConA) treatment. While MEHP reduced Th1/Th2 ratio (represented by IFN-γ/IL-6). IL-4 mRNA was significantly increased by DEHP but not by MEHP after PMA and Ion treatment. DEHP significantly inhibited NFATp protein in cytosol and nucleus. DEHP augmented nuclear translocation of NFATc in transfected EL4 cells and NFAT DNA-binding activity. DEHP-mediated enhancement of calcium-dependent phosphatase calcineurin (CaN) protein, and NFAT and IL-4 expression were abrogated by calcium antagonist verapamil and CaN inhibitor tarcolimus. Ca2+/calmodulin antagonist chlorpromazine significantly suppressed IL-4 and CaN production with no NFAT mRNA change. Our study suggests that DEHP and MEHP impact Th1/Th2 balance by modulating different cytokines. DEHP-affected IL-4 expression through Ca/CaN/NFAT signaling pathway, but no effect was discovered for MEHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu WL, Shen CF, Zhang Z, Zhang CB (2009) Distribution of phthalate esters in soil of e-waste recycling sites from Taizhou city in China. Bull Environ Contam Toxico l82:665–667

    Article  CAS  Google Scholar 

  2. Oie L, Hersoug LG, Madsen JO (1997) Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ Health Perspect 105:972–978

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Li XW, Liang Y, Su Y, Deng H, Li XH (2012) Adverse effects of di-(2-ethylhexyl) phthalate on Leydig cell regeneration in the adult rat testis. Toxicol Lett 215:84–91

    Article  PubMed  CAS  Google Scholar 

  4. Van der PI, Garinis GA, Brandt RM, Gorgels TG, Wijnhoven SW (2007) Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with cockayne syndrome. PLoS Biol 5:e2

    Article  CAS  Google Scholar 

  5. Caldwell JC (2012) DEHP: genotoxicity and potential carcinogenic mechanisms—a review. Mutat Res 751:82–157

    Article  PubMed  CAS  Google Scholar 

  6. Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B (2004) The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect 112:1393–1397

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Tonk EC, Verhoef A, Gremmer ER, van Loveren H, Piersma AH (2012) Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 260:48–57

    Article  PubMed  CAS  Google Scholar 

  8. Larsen ST, Hansen JS, Thygesen P, Begtrup M, Poulsena OM (2001) Adjuvant and immuno-suppressive effect of six monophthalates in a subcutaneous injection model with BALB/c mice. Toxicology 169:37–51

    Article  PubMed  CAS  Google Scholar 

  9. Lee J, Oh PS, Lim KT (2011) Allergy-related cytokines (IL-4 and TNF-α) are induced by di(2-ethylhexyl) phthalate and attenuated by plant-originated glycoprotein (75 kDa) in HMC-1 cells. Environ Toxicol 26:364–372

    Article  PubMed  CAS  Google Scholar 

  10. Piccinni MP, Maggi E, Romagnani S (2000) Environmental factors favoring the allergen-specific Th2 response in allergic subjects. Ann N Y Acad Sci 917:844–852

    Article  PubMed  CAS  Google Scholar 

  11. Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N (2010) Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS Comput Biol 6:e1000788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks. Nucleic Acids Res 37:D786–D792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Butala JH, David RM, Gans G, McKee RH, Guo TL (2004) Phthalate treatment does not influence levels of IgE or Th2 cytokines in B6C3F1 mice. Toxicology 201:77–85

    Article  PubMed  CAS  Google Scholar 

  14. Glue C, Millner A, Bodtger U, Jinquan T, Poulsen LK (2002) In vitro effects of monophthalates on cytokine expression in the monocytic cell line THP-1 and in peripheral blood mononuclear cells from allergic and non-allergic donors. Toxicol In Vitro 16:657–662

    Article  PubMed  CAS  Google Scholar 

  15. Larsen ST, Nielsen GD (2007) The adjuvant effect of di-(2-ethylhexyl) phthalate is mediated through a PPAR alpha-independent mechanism. Toxicol Lett 170:223–238

    Article  PubMed  CAS  Google Scholar 

  16. Lee MH, Parka J, Chung SW, Kang BY, Kim SH (2004) Enhancement of interleukin-4 production in activated CD4+ T Cells by diphthalate plasticizers via increased NF-AT binding activity. Int Arch Allergy Immunol 134:213–222

    Article  PubMed  CAS  Google Scholar 

  17. Yano K, Ohno S, Nakajim Ya, Toyoshima S, Nakajin S (2003) Effects of various chemicals including endocrine disruptors and analogs on the secretion of Th1 and Th2 cytokines from anti CD3-stimulated mouse spleen cells. J Health Sci 49:195–204

    Article  CAS  Google Scholar 

  18. Burn SF, Webb A, Berry RL, Davies JA, Ferrer-Vaquer A (2011) Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 352:288–298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Oh-hora M, Rao A (2009) The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 11:612–619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan B, Feoktistova E, König T, Avots A, Schmitt E, Berberich-Siebelt F (2002) Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16:881–895

    Article  PubMed  CAS  Google Scholar 

  21. Lee MH, Chung SW, Kang BY, Parka J, Lee CH (2003) Enhanced interleukin-4 production in CD4+ T cell and elevated lgE levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of NF-AT and Ca2+. Immunology 109:76–86

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Palleschi S, Rossi B, Diana L, Silvestroni L (2009) Di(2-ethylhexyl)phthalate stimulates Ca(2+) entry, chemotaxis and ROS production in human granulocytes. Toxicol Lett 187:52–57

    Article  PubMed  CAS  Google Scholar 

  23. Pozo D, Delgado M, Fernandez-Santos JM, Calvo JR, Gomariz RP (2007) Expression of the Mel1a-melatonin receptor mRNA in T and B subsets of lymphocytes from rat thymus and spleen. FASEB J 11:466–473

    Google Scholar 

  24. Yeong PS, Ning YX, Xu YL, Li XB, Yin LH (2010) Tryptase promotes human monocyte-derived macrophage foam cell formation by suppressing LXRα activation. Biochim Biophys Acta 1801:567–576

    Article  PubMed  CAS  Google Scholar 

  25. Su EC, Chang JM, Cheng CW, Sung TY, Hsu WL (2012) Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing. BMC Bioinform 13:13

    Article  Google Scholar 

  26. Jepsen KF, Abildtrup A, Larsen ST (2004) Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549. Toxicol In Vitro 18:265–269

    Article  PubMed  CAS  Google Scholar 

  27. Wu CC, Hsu SC, Shih HM, Lai MZ (2003) Nuclear factor of activated T cells c is a target of p38 mitogen-activated protein kinase in T cells. Mol Cell Biol 23:6442–6654

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Mengozzi M, Fantuzzi G, Faggioni R, Marchant A, Goldman M (1994) Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production in mice. Immunology 82:207–210

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Tarazona R, González-García A, Zamzami N, Marchetti P, Frechin N (1995) Chlorpromazine amplifies macrophage-dependent IL-10 production in vivo. J Immunol 154:861–870

    PubMed  CAS  Google Scholar 

  30. Jaakkola JJ, Knight TL (2008) The Role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environ Health Perspect 116:845–853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Larsen ST, Hansen JS, Hansen EW, Clausen PA, Nielsen GD (2007) Airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice. Toxicology 235:119–129

    Article  PubMed  CAS  Google Scholar 

  32. Larsen ST, Lund RM, Nielsen GD, Thygesen P, Poulsen OM (2001) Di-(2-ethylhexyl) phthalate possesses an adjuvant effect in a subcutaneous injection model with BALB/c mice. Toxicol Lett 125:11–18

    Article  Google Scholar 

  33. Pei XC, Guo L, Zhang YM, Duan ZW, Ma MY (2009) Mechanism of effect of phthalate (2-ethylhexyl) ester on IL-4 protein. Chin Occup Med 36:368–370

    CAS  Google Scholar 

  34. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326:298–304

    Article  PubMed  CAS  Google Scholar 

  35. Casolaro V, Georas S, Song Z, Ono S (1996) Biology and genetics of atopic disease. Curr Opin Immunol 8:796–803

    Article  PubMed  CAS  Google Scholar 

  36. Lou C, Burgeon E, Rao A (1996) Mechanisms of transactivation by nuclear factor of activated T cells-1. J Exp Med 184:141–147

    Article  Google Scholar 

  37. Zhou B, Cron RQ, Wu B, Genin A, Wang Z (2002) Regulation of the murine Nfatc1 gene by NFATc2. J Biol Chem 277:10704–10711

    Article  PubMed  CAS  Google Scholar 

  38. Ranger AM, Hodge MR, Gravallese EM, Oukka M, Davidson L (1998) Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8:125–134

    Article  PubMed  CAS  Google Scholar 

  39. Ranger AM, Gerstenfeld LC, Wang JX (2000) The nuclear factor of activated T cells (NFAT) transcriotion factor NFATp (NFATc2) is a repressor of chondrongenesis. J Exp Med 191:9–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Teixeira LK, Fonseca BP, Vieira-de-Abreu A, Barboza BA, Robbs BK (2005) IFN-gamma production by CD8+ T cells depends on NFAT1 transcription factor and regulates Th differentiation. J Immunol 175:5931–5939

    Article  PubMed  CAS  Google Scholar 

  41. Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD (1996) An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272:892–895

    Article  PubMed  CAS  Google Scholar 

  42. Timmerman LA, Healy JI, Ho SN, Chen L, Goodnow CC (1997) Redundant expression but selective utilization of nuclear factor of activated T cells family members. J Immunol 159:2735–2740

    PubMed  CAS  Google Scholar 

  43. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287

    Article  PubMed  CAS  Google Scholar 

  44. Zarain-Herzberg A, Fragoso-Medina J, Estrada-Avilés R (2011) Calcium-regulated transcriptional pathways in the normal and pathologic heart. IUBMB Life 63:847–855

    Article  PubMed  CAS  Google Scholar 

  45. Gachet S, Ghysdael J (2009) Calcineurin/NFAT signaling in lymphoid malignancies. Gen Physiol Biophys 28:F47–F54

    Article  PubMed  Google Scholar 

  46. Dhanya CR, Indu AR, Deepadevi KV, Kurup PA (2003) Inhibition of membrane Na(+)–K+ Atpase of the brain, liver and RBC in rats administered di(2-ethyl hexyl) phthalate (DEHP) a plasticizer used in polyvinyl chloride (PVC) blood storage bags. Indian J Exp Biol 41:814–820

    PubMed  CAS  Google Scholar 

  47. Szuster-Ciesielska A, Słotwińska M, Stachura A, Marmurowska-Michałowska H, Kandefer-Szerszeń M (2004) Neuroleptics modulate cytokine and reactive oxygen species production in blood leukocytes of healthy volunteers. Arch Immunol Ther Exp 52:59–67

    CAS  Google Scholar 

  48. Landkocz Y, Poupin P, Atienzar F, Vasseur P (2011) Transcriptomic effects of di-(2-ethylhexyl)-phthalate in Syrian hamster embryo cells: an important role of early cytoskeleton disturbances in carcinogenesis. BMC Genomics 12:524

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Guo L, Urban JF, Zhu J, Paul WE (2008) Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization. J Immunol 181:3984–3993

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Kubokawa M, Nakamura K, Komagiri Y (2011) Interaction between calcineurin and Ca2+/calmodulin kinase-II in modulating cellular functions. Enzyme Res 2011:58735–58739

    Article  CAS  Google Scholar 

  51. MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q (2009) CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res 105:316–325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114:1352–1359

    Article  PubMed  CAS  Google Scholar 

  53. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246

    PubMed  Google Scholar 

  54. Umetsu D (2003) Revising the immunological theories of asthma and allergy. Lancet 365:98–100

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (NSFC) (Grant no. 30700671), the Research Foundation of Shenyang Medical College (20091008) and the National Science Foundation of China (NSFC) (Grant no. 81373029). We thank Dr. X. M. Gao (Health Science Center, Peking University) for preparing EL4 cells for us.

Conflict of interest

The authors report no conflict of interest related to this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucong Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, X., Duan, Z., Ma, M. et al. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol Biol Rep 41, 2129–2142 (2014). https://doi.org/10.1007/s11033-014-3062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3062-4

Keywords

Navigation