Skip to main content
Log in

cAMP/PKA Signaling Pathway Induces Apoptosis by Inhibited NF-κB in Aluminum Chloride-Treated Lymphocytes In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To explore the apoptosis mechanism in lymphocytes of rats induced by aluminum chloride (AlCl3) by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, the splenic lymphocytes of rats were cultured and exposed to different concentrations of AlCl3 for 24 h. The final concentrations of AlCl3 (AlCl3 · 6H2O) in supernatant were 0 (control group, CG), 0.3 mmol/L (low-dose group, LG), 0.6 mmol/L (mid-dose group, MG), and 1.2 mmol/L (high-dose group, HG), respectively. Lymphocytes Apoptosis rate, intracellular cAMP content, PKA, survivin, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2-associated X protein (Bax) mRNA expressions, and the mRNA and protein expressions of nuclear factor-κ-gene binding (NF-κB, p65) were detected, respectively. The results showed that apoptosis index of lymphocytes, cAMP content in intracellular and PKA mRNA expression were significantly upregulated, whereas NF-κB and survivin mRNA expressions, nuclear NF-κB (p65) protein expression, and the ratio of Bcl-2 and Bax mRNA expression were downregulated in the AlCl3-treated groups compared with those in CG. The results indicated that the activated cAMP/PKA signaling pathway induces apoptosis by inhibited NF-κB in AlCl3-treated lymphocytes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banasik A, Lankoff A, Piskulak A, Adamowska K, Lisowska H, Wojcik A (2005) Aluminum-induced micronuclei and apoptosis in human peripheral-blood lymphocytes treated during different phases of the cell cycle. Environ Toxicol 20:402–406

    Article  CAS  PubMed  Google Scholar 

  2. Willhite CC, Ball GL, McLellan CJ (2012) Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit Rev Toxicol 42:358–442

    Article  CAS  PubMed  Google Scholar 

  3. Bolitho P, Voskoboinik I, Trapani JA, Smyth MJ (2007) Apoptosis induced by the lymphocyte effector molecule perforin. Curr Opin Immunol 19:339–347

    Article  CAS  PubMed  Google Scholar 

  4. Dunkle A, He YW (2011) Apoptosis and autophagy in the regulation of T lymphocyte function. Immunol Res 49:70–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Opferman JT (2008) Apoptosis in the development of the immune system. Cell Death Differ 15:234–242

    Article  CAS  PubMed  Google Scholar 

  6. Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465

    Article  PubMed  Google Scholar 

  7. Tarantino G, Savastano S, Capone D, Colao A (2011) Spleen: a new role for an old player? World J Gastroenterol 17:3776–3784

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao S, Wang Y, Zhang P, Dong Y, Li B (2008) Subacute oral exposure to dibromoacetic acid induced immunotoxicity and apoptosis in the spleen and thymus of the mice. Toxicol Sci 105:331–341

    Article  CAS  PubMed  Google Scholar 

  9. Fang XM, Feng YX, Wang JS, Dai JY (2010) Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway. Toxicology 267:54–59

    Article  CAS  PubMed  Google Scholar 

  10. Coutant A, Lebeau J, Bidon-Wagner N, Levalois C, Lectard B, Chevillard S (2006) Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of Caspase-dependent and-independent pathways. Biochimie 88:1815–1822

    Article  CAS  PubMed  Google Scholar 

  11. Ivanov VN, Lee RK, Podack ER, Malek TR (1997) Regulation of Fas-dependent activation-induced T cell apoptosis by cAMP signaling: a potential role for transcription factor NF-kappa B. Oncogene 14:2455–2464

    Article  CAS  PubMed  Google Scholar 

  12. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB (1995) TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 154:1634–1643

    CAS  PubMed  Google Scholar 

  13. Li M, Song M, Ren LM, Xiu CY, Liu JY, Zhu YZ, Li YF (2014) AlCl3 induces lymphocyte apoptosis in rats through the mitochondria-caspase dependent pathway. Environ Toxicol. doi:10.1002/tox22051

    Google Scholar 

  14. Zhang JH, Hu CW, Zhu YZ, Liu SM, Bai CS, Han YF, Xia SL, Li YF (2013) Effects of norepinephrine on immune functions of cultured splenic lymphocytes exposed to aluminum trichloride. Biol Trace Elem Res 154:275–280

    Article  CAS  PubMed  Google Scholar 

  15. Liberman AC, Refojo D, Antunica-Noguerol M, Holsboer F, Arzt E (2012) Underlying mechanisms of cAMP-and glucocorticoid-mediated inhibition of FasL expression in activation-induced cell death. Mol Immunol 50:220–235

    Article  CAS  PubMed  Google Scholar 

  16. Parry GC, Mackman N (1997) Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappa B-mediated transcription. J Immunol 159:5450–5456

    CAS  PubMed  Google Scholar 

  17. Takahashi N, Tetsuka T, Uranishi H, Okamoto T (2002) Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 269:4559–4565

    Article  CAS  PubMed  Google Scholar 

  18. Sen R (2006) Control of B lymphocyte apoptosis by the transcription factor NF-kappaB. Immunity 25:871–883

    Article  CAS  PubMed  Google Scholar 

  19. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  20. Zatta P, Zambenedetti P, Pizzuiti A, Perazzolo M (1995) Different effects of aluminum upon carbonic anhydrases and Na+/K+-ATPase activities in rat. Neurosci Lett 197:65–68

    Article  CAS  PubMed  Google Scholar 

  21. She Y, Wang N, Chen C, Zhu YZ, Xia SL, Hu CW, Li YF (2012) Effects of aluminum on immune functions of cultured splenic T and B lymphocytes in rats. Biol Trace Elem Res 147:246–250

    Article  CAS  PubMed  Google Scholar 

  22. Amirmajdi MM, Sankian M, Eftekharzadeh M, Varasteh A, Vahedi F, Sadrizadeh A, Spotin (2011) Apoptosis of human lymphocytes after exposure to hydatid fluid. Iran J Parasitol 6:9–16

    Google Scholar 

  23. Schmidt SM, Schag K, Müller MR, Weck MM, Appel S, Kanz L, Grünebach F, Brossart P (2003) Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102:571–576

    Article  CAS  PubMed  Google Scholar 

  24. Nizamutdinova IT (2013) Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis via inhibition of sustained activation of NF-κB signaling. J Cell Physiol 228

  25. Ishida M, Mitsui T, Yamakawa K, Sugiyama N, Takahashi W, Shimura H, Endo T, Kobayashi T, Arita J (2007) Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am J Physiol Endocrinol Metab 293:E1529–E1537

    Article  CAS  PubMed  Google Scholar 

  26. Moore AR, Willoughby DA (1995) The role of cAMP regulation in controlling inflammation. Clin Exp Immunol 101:387–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosenden R, Taskén K (2011) Cyclic AMP-mediated immune regulation-overview of mechanisms of action in T cells. Cell Signal 23:1009–1016

    Article  CAS  PubMed  Google Scholar 

  28. Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC (2012) Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol 204:277–287

    Article  CAS  Google Scholar 

  29. Zhang L, Murray F, Zahno A, Kanter JR, Chou D, Suda R, Fenlon M, Rassenti L, Cottam H, Kipps TJ, Insel PA (2008) Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 105:19532–19537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zambon AC, Zhang L, Minovitsky S, Kanter JR, Prabhakar S, Salomonis N, Vranizan K, Dubchak I, Conklin BR, Insel PA (2005) Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A. Proc Natl Acad Sci U S A 102:8561–8566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Zambon AC, Vranizan K, Pothula K, Conklin BR, Insel PA (2008) Gene expression signatures of cAMP/protein kinase A (PKA)-promoted, mitochondrial-dependent apoptosis. J Biophys Chem 283:4304–4313

    CAS  Google Scholar 

  32. Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis. (Rev) Int J Oncol 22:15–20

    CAS  Google Scholar 

  33. Si MS, Reitz BA, Borie DC (2005) Effects of the kinase inhibitor CGP41251 (PKC 412) on lymphocyte activation and TNF-alpha production. Int Immunopharmacol 5:1141–1149

    Article  CAS  PubMed  Google Scholar 

  34. Zhang A, Chen D, Wei H, Du L, Zhao T, Wang X, Zhou H (2012) Functional characterization of TNF-alpha in grass carp head kidney leukocytes: induction and involvement in the regulation of NF-kappaB signaling. Fish Shellfish Immunol 33:1123–1132

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Yun H, Murray F, Lu R, Wang L, Hook V, Insel PA (2011) Cytotoxic T lymphocyte antigen-2 alpha induces apoptosis of murine T-lymphoma cells and cardiac fibroblasts and is regulated by cAMP/PKA. Cell Signal 23:1611–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Altieri DC (2008) New wirings in the survivin networks. Oncogene 27:6276–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  CAS  PubMed  Google Scholar 

  38. Liu N, Zheng Y, Zhu Y, Xiong S, Chu Y (2011) Selective impairment of CD4+ CD25+ Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int Immunopharmacol 11:212–219

    Article  CAS  PubMed  Google Scholar 

  39. Shinagawa A, Yoshida Y, Kurokawa T, Horiuchi Y, Tsuyoshi H, Orisaka M, Sawamura Y, Kleinman HK, Kotsuji F (2011) The potent peptide antagonist to angiogenesis, C16Y, and cisplatin act synergistically in the down-regulation of the Bcl-2/Bax ratio and the induction of apoptosis in human ovarian cancer cells. Int J Oncol 39:1359–1364

    CAS  PubMed  Google Scholar 

  40. Lu HF, Chie YJ, Yang MS, Lee CS, Fu JJ, Yang JS, Tan TW, Wu SH, Ma YS, Ip SW, Chung JG (2010) Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax-and Bcl-2-triggered mitochondrial pathway. Int J Oncol 36:1477–1484

    Article  CAS  PubMed  Google Scholar 

  41. Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114:1117–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Maghrebi M, Kehinde EO, Anim JT (2010) Long term testicular ischemia-reperfusion injury-induced apoptosis: involvement of survivin down-regulation. Biochem Biophys Res Commun 395:342–347

    Article  CAS  PubMed  Google Scholar 

  43. Ogura A, Oowada S, Kon Y, Hirayama A, Yasui H, Meike S, Kobayashi S, Kuwabara M, Inanami O (2009) Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells. Cancer Lett 277:64–71

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Verma IM (2002) NF-kappa B regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  45. Villela D, de Sa LL, Peres R, Peliciari-Garcia RA, do Amaral FG, Cipolla-Neto J, Scavone C, Afeche SC (2014) Norepinephrine activates NF-kappaB transcription factor in cultured rat pineal gland. Life Sci 94:122–129

    Article  CAS  PubMed  Google Scholar 

  46. Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skålhegg BS, Hansson V, Mustelin TTaskén K (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skålhegg B, Landmark B, Døskeland S, Hansson V, Lea T, Jahnsen T (1992) Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3′, 5′-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biophys Chem 267:15707–15714

    Google Scholar 

  48. Aandahl EM, Aukrust P, Skalhegg BS, Muller F, Froland SS, Hansson V, Tasken K (1998) Protein kinase A type I antagonist restores immune responses of T cells from HIV-infected patients. FASEB J 12:855–862

    CAS  PubMed  Google Scholar 

  49. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 146:108–113

    CAS  PubMed  Google Scholar 

  50. Haraguchi S, Good RA, Day NK (1995) Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol Today 16:595–603

    Article  CAS  PubMed  Google Scholar 

  51. Hilkens CM, Snijders A, Snijdewint FG, Wierenga EA, Kapsenberg ML (1996) Modulation of T-cell cytokine secretion by accessory cell-derived products. Eur Respir J Suppl 22:90s–94s

    CAS  PubMed  Google Scholar 

  52. Snijdewint FG, Kalinski P, Wierenga EA, Bos JD, Kapsenberg ML (1993) Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol 150:5321–5329

    CAS  PubMed  Google Scholar 

  53. Balistreri CR, Candore G, Accardi G, Colonna-Romano G, Lio D (2013) NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies. Immun Ageing 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  54. Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J, Rodilla V, Inglés-Esteve J, Nomdedeu J, Bellosillo B (2010) The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 18:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Guerra M, Colomer D (2010) NF-κB as a therapeutic target in chronic lymphocytic leukemia. Expert Opin Ther Targets 14:275–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Science Foundation Project of China (31172375, 31302147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Li.

Additional information

Feibo Xu and Jing Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, J., Cao, Z. et al. cAMP/PKA Signaling Pathway Induces Apoptosis by Inhibited NF-κB in Aluminum Chloride-Treated Lymphocytes In Vitro. Biol Trace Elem Res 170, 424–431 (2016). https://doi.org/10.1007/s12011-015-0461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0461-x

Keywords

Navigation