Skip to main content

Advertisement

Log in

Characterization of CYP1A2, CYP2C19, CYP3A4 and CYP3A5 polymorphisms in South Brazilians

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Potential causes of variability in drug response include intrinsic factors such as ethnicity and genetic differences in the expression of enzymes that metabolize drugs, such as those from Cytochrome P450 (CYPs) superfamily. Pharmacogenetic studies search for genetic differences between populations since relevant alleles occur with varying frequencies among different ethnic populations. The Brazilian population is one of the most heterogeneous in the world, resulting from multiethnic admixture of Amerindians, Europeans, and Africans across centuries. Since the knowledge of CYP allele frequency distributions is relevant to pharmacogenetic strategies and these data are scarce in the Brazilian population, this study aimed to describe genotype and allele distributions of 15 single nucleotide polymorphisms (SNPs) at CYP 1A2, 2C19, 3A4, and 3A5 genes in African and European descents from South Brazil. A sample of 179 healthy individuals of European and African ancestry was genotyped by the MassARRAY SNP genotyping system. CYP3A5*3, CYP1A2*1F, CYP3A4*1B, and CYP2C19*2 were the most frequent alleles found in our sample. Significant differences in genotype and allelic distribution between African and European descents were observed for CYP3A4 and CYP3A5 genes. CYP3A4*1B was observed in higher frequency in African descents (0.379) than in European descents (0.098), and European descents showed higher frequency of CYP3A5*3 (0.810) than African descents (0.523). Our results indicate that only a few polymorphisms would have impact in pharmacogenetic testing in South Brazilians. Further studies with larger sample sizes are required also among other Brazilian regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nebert DW, Vesell ES (2006) Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol Sci 27:580–586

    Article  CAS  PubMed  Google Scholar 

  2. The Human Cytochrome P450 (CYP) (2006) Allele nomenclature database http://www.cypalleles.ki.se/. Accessed 20 March 2012

  3. Ingelman-Sundberg M, Rodriguez-Antona C (2005) Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci 360:1563–1570

    Article  CAS  PubMed  Google Scholar 

  4. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396

    PubMed  Google Scholar 

  5. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmöller J (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    Article  CAS  PubMed  Google Scholar 

  6. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  7. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, Schuetz EG (2002) Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12:121–132

    Article  CAS  PubMed  Google Scholar 

  8. Daly AK (2007) Individualized drug therapy. Curr Opin Drug Discov Dev 10:29–36

    CAS  Google Scholar 

  9. Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, Raunio H, Crespi CL, Gonzalez FJ (2000) CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 67:48–56

    Article  CAS  PubMed  Google Scholar 

  10. Garsa AA, McLeod HL, Marsh S (2005) CYP3A4 and CYP3A5 genotyping by Pyrosequencing. BMC Med Genet 6:19

    Article  PubMed Central  PubMed  Google Scholar 

  11. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A (2004) CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 75:1059–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    Article  CAS  PubMed  Google Scholar 

  13. Sikka R, Magauran B, Ulrich A, Shannon M (2005) Bench to bedside: pharmacogenomics, adverse drug interactions, and the cytochrome P450 system. Acad Emerg Med 12:1227–1235

    Article  PubMed  Google Scholar 

  14. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  CAS  PubMed  Google Scholar 

  15. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C > A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Aklillu E, Carrillo JA, Makonnen E, Hellman K, Pitarque M, Bertilsson L, Ingelman-Sundberg M (2003) Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 64:659–669

    Article  CAS  PubMed  Google Scholar 

  17. de Leon J (2009) The future (or lack of future) of personalized prescription in psychiatry. Pharmacol Res 59:81–89

    Article  PubMed  Google Scholar 

  18. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  19. de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  20. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    Article  CAS  PubMed  Google Scholar 

  21. Salzano FM, Bortolini MC (2002) Genetics and evolution of Latin American populations. Cambridge University, Cambridge

    Google Scholar 

  22. Callegari-Jacques SM, Grattapaglia D, Salzano FM, Salamoni SP, Crossetti SG, Ferreira ME, Hutz MH (2003) Historical genetics: spatiotemporal analysis of the formation of the Brazilian population. Am J Hum Biol 15:824–834

    Article  PubMed  Google Scholar 

  23. Zembrzuski VM, Callegari-Jacques SM, Hutz MH (2006) Application of an African Ancestry Index as a genomic control approach in a Brazilian population. Ann Hum Genet 70:822–828

    Article  CAS  PubMed  Google Scholar 

  24. Santos NP, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AK, Pereira R, Gusmão L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SE (2010) Assessing individual interethnic admixture and population substructure using a 48 insertion/deletion ancestry-informative marker panel. Hum Mutat 31:184–190

    Article  CAS  PubMed  Google Scholar 

  25. Kohlrausch FB, Gama CS, Lobato MI, Belmonte-De-Abreu PS, Gesteira A, Barros F, Carracedo A, Hutz MH (2009) Molecular diversity at the CYP2D6 locus in healthy and schizophrenic southern Brazilians. Pharmacogenomics 10:1457–1466

    Article  CAS  PubMed  Google Scholar 

  26. Salzano FM, Freire-Maia N (1970) Problems in human biology. A study of Brazilian populations. Wayne State University, Detroit

    Google Scholar 

  27. Lahiri DK, Nurnberger JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hamdy SI, Hiratsuka M, Narahara K, Endo N, El-Enany M, Moursi N, Ahmed MS, Mizugaki M (2003) Genotyping of four genetic polymorphisms in the CYP1A2 gene in the Egyptian population. Br J Clin Pharmacol 55:321–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Skarke C, Kirchhof A, Geisslinger G, Lötsch J (2005) Rapid genotyping for relevant CYP1A2 alleles by pyrosequencing. Eur J Clin Pharmacol 61:887–892

    Article  CAS  PubMed  Google Scholar 

  30. Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS (2007) Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther 32:641–649

    Article  CAS  PubMed  Google Scholar 

  31. Gunes A, Ozbey G, Vural EH, Uluoglu C, Scordo MG, Zengil H, Dahl ML (2009) Influence of genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish population. Pharmacogenomics 10:769–778

    Article  CAS  PubMed  Google Scholar 

  32. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E (2010) Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 −163C>A polymorphism. Eur J Clin Pharmacol 66:697–703

    Article  CAS  PubMed  Google Scholar 

  33. Gentile G, Missori S, Borro M, Sebastianelli A, Simmaco M, Martelletti P (2010) Frequencies of genetic polymorphisms related to triptans metabolism in chronic migraine. J Headache Pain 11:151–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M (2011) Genetic variants in CYP (−1A2, −2C9, −2C19, −3A4 and −3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics 12:1663–1670

    Article  CAS  PubMed  Google Scholar 

  35. Chang M, Dahl ML, Tybring G, Götharson E, Bertilsson L (1995) Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics 5:358–363

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein JA, Ishizaki T, Chiba K, de Morais SM, Bell D, Krahn PM, Evans DA (1997) Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7:59–64

    Article  CAS  PubMed  Google Scholar 

  37. Ruas JL, Lechner MC (1997) Allele frequency of CYP2C19 in a Portuguese population. Pharmacogenetics 7(4):333–335

    Article  CAS  PubMed  Google Scholar 

  38. Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z, Nacak M, Roots I (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48:409–415

    Article  CAS  PubMed  Google Scholar 

  39. Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850

    Article  CAS  PubMed  Google Scholar 

  40. Allabi AC, Gala JL, Desager JP, Heusterspreute M, Horsmans Y (2003) Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmacol 56:653–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shimizu T, Ochiai H, Asell F, Shimizu H, Saitoh R, Hama Y, Katada J, Hashimoto M, Matsui H, Taki K, Kaminuma T, Yamamoto M, Aida Y, Ohashi A, Ozawa N (2003) Bioinformatics research on inter-racial difference in drug metabolism I. Analysis on frequencies of mutant alleles and poor metabolizers on CYP2D6 and CYP2C19. Drug Metab Pharmacokinet 18:48–70

    Article  CAS  PubMed  Google Scholar 

  42. Hilli J, Rane A, Lundgren S, Bertilsson L, Laine K (2007) Genetic polymorphism of cytochrome P450s and P-glycoprotein in the Finnish population. Fundam Clin Pharmacol 21:379–386

    Article  CAS  PubMed  Google Scholar 

  43. Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90:1225–1229

    Article  CAS  PubMed  Google Scholar 

  44. Zeigler-Johnson CM, Walker AH, Mancke B, Spangler E, Jalloh M, McBride S, Deitz A, Malkowicz SB, Ofori-Adjei D, Gueye SM, Rebbeck T (2002) Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered 54:13–21

    Article  CAS  PubMed  Google Scholar 

  45. Floyd MD, Gervasini G, Masica AL, Mayo G, George AL Jr, Bhat K, Kim RB, Wilkinson GR (2003) Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 13:595–606

    Article  CAS  PubMed  Google Scholar 

  46. Turolo S, Tirelli AS, Ferraresso M, Ghio L, Belingheri M, Groppali E, Torresani E, Edefonti A (2010) Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol Rep 62:1159–1169

    Article  CAS  PubMed  Google Scholar 

  47. Siemes C, Visser LE, de Jong FH, Coebergh JW, Uitterlinden AG, Hofman A, Stricker BH, van Schaik RH (2010) Cytochrome P450 3A gene variation, steroid hormone serum levels and prostate cancer–The Rotterdam Study. Steroids 75:1024–1032

    Article  CAS  PubMed  Google Scholar 

  48. Magliulo L, Dahl ML, Lombardi G, Fallarini S, Villa LM, Biolcati A, Scordo MG (2011) Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol 67:47–54

    Article  CAS  PubMed  Google Scholar 

  49. Eiselt R, Domanski TL, Zibat A, Mueller R, Presecan-Siedel E, Hustert E, Zanger UM, Brockmoller J, Klenk HP, Meyer UA, Khan KK, He YA, Halpert JR, Wojnowski L (2001) Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11:447–458

    Article  CAS  PubMed  Google Scholar 

  50. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmöller J, Halpert JR, Zanger UM, Wojnowski L (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11:773–779

    Article  CAS  PubMed  Google Scholar 

  51. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, Roger M (2005) CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos 33:884–887

    Article  CAS  PubMed  Google Scholar 

  52. Quaranta S, Chevalier D, Allorge D, Lo-Guidice JM, Migot-Nabias F, Kenani A, Imbenotte M, Broly F, Lacarelle B, Lhermitte M (2006) Ethnic differences in the distribution of CYP3A5 gene polymorphisms. Xenobiotica 36:1191–1200

    Article  CAS  PubMed  Google Scholar 

  53. Ikediobi O, Aouizerat B, Xiao Y, Gandhi M, Gebhardt S, Warnich L (2011) Analysis of pharmacogenetic traits in two distinct South African populations. Hum Genomics 5:82–265

    Article  Google Scholar 

  54. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671

    PubMed  Google Scholar 

  55. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, Hutz MH (2005) The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 78:551–558

    Article  CAS  PubMed  Google Scholar 

  56. Almeida S, Zandoná MR, Franken N, Callegari-Jacques SM, Osório-Wender MC, Hutz MH (2005) Estrogen-metabolizing gene polymorphisms and lipid levels in women with different hormonal status. Pharmacogenomics J 5:346–351

    Article  CAS  PubMed  Google Scholar 

  57. Kohlrausch FB, Gama CS, Lobato MI, Belmonte-de-Abreu P, Callegari-Jacques SM, Gesteira A, Barros F, Carracedo A, Hutz MH (2008) Naturalistic pharmacogenetic study of treatment resistance to typical neuroleptics in European-Brazilian schizophrenics. Pharmacogenet Genomics 18:599–609

    Article  CAS  PubMed  Google Scholar 

  58. Sprinz E, Bay MB, Lazzaretti RK, Jeffman MW, Mattevi VS (2008) Lopinavir/ritonavir monotherapy as maintenance treatment in HIV-infected individuals with virological suppression: results from a pilot study in Brazil. HIV Med 9:270–276

    Article  CAS  PubMed  Google Scholar 

  59. Cavalli SA, Hirata MH, Hirata RD (2001) Detection of MboII polymorphism at the 5′ promoter region of CYP3A4. Clin Chem 47:348–351

    CAS  PubMed  Google Scholar 

  60. Rodrigues IS, Kuasne H, Losi-Guembarovski R, Fuganti PE, Gregório EP, Kishima MO, Ito K, de Freitas Rodrigues MA, de Syllos Cólus IM (2011) Evaluation of the influence of polymorphic variants CYP1A1 2B, CYP1B1 2, CYP3A4 1B, GSTM1 0, and GSTT1 0 in prostate cancer. Urol Oncol 29:654–663

    Article  CAS  PubMed  Google Scholar 

  61. Westlind-Johnsson A, Hermann R, Huennemeyer A, Hauns B, Lahu G, Nassr N, Zech K, Ingelman-Sundberg M, von Richter O (2006) Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin Pharmacol Ther 79:339–349

    Article  CAS  PubMed  Google Scholar 

  62. García-Martín E, Martínez C, Pizarro RM, García-Gamito FJ, Gullsten H, Raunio H, Agúndez JA (2002) CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 71:196–204

    Article  PubMed  Google Scholar 

  63. Eap CB, Buclin T, Hustert E, Bleiber G, Golay KP, Aubert AC, Baumann P, Telenti A, Kerb R (2004) Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 60:231–236

    CAS  PubMed  Google Scholar 

  64. Oliver P, Lubomirov R, Carcas A (2010) Genetic polymorphisms of CYP1A2, CYP3A4, CYP3A5, pregnane/steroid X receptor and constitutive androstane receptor in 207 healthy Spanish volunteers. Clin Chem Lab Med 48:635–639

    Article  CAS  PubMed  Google Scholar 

  65. Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, Goldstein JA (2001) Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 299:825–831

    CAS  PubMed  Google Scholar 

  66. Zaied C, Abid S, Mtiraoui N, Zellema D, Achour A, Bacha H (2012) Cytochrome P450 (CYP3A4*18) and glutathione-S-transferase (GSTP1) polymorphisms in a healthy Tunisian population. Genet Test Mol Biomarkers 16:1184–1187

    Article  CAS  PubMed  Google Scholar 

  67. Drögemöller B, Plummer M, Korkie L, Agenbag G, Dunaiski A, Niehaus D, Koen L, Gebhardt S, Schneider N, Olckers A, Wright G, Warnich L (2013) Characterization of the genetic variation present in CYP3A4 in three South African populations. Front Genet 4:17

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yamamoto T, Nagafuchi N, Ozeki T, Kubota T, Ishikawa H, Ogawa S, Yamada Y, Hirai H, Iga T (2003) CYP3A4*18: it is not rare allele in Japanese population. Drug Metab Pharmacokinet 18:267–268

    Article  CAS  PubMed  Google Scholar 

  69. Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T, Kurose K, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Hanai S, Nakajima T, Matsumoto K, Saito H, Goto Y, Kimura H, Katoh M, Sugai K, Minami N, Shirao K, Tamura T, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N, Kitamura Y, Kamatani N, Ozawa S, Sawada J (2004) Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 23:100

    Article  PubMed  Google Scholar 

  70. Hu YF, He J, Chen GL, Wang D, Liu ZQ, Zhang C, Duan LF, Zhou HH (2005) CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta 353:187–192

    Article  CAS  PubMed  Google Scholar 

  71. Du J, Xing Q, Xu L, Xu M, Shu A, Shi Y, Yu L, Zhang A, Wang L, Wang H, Li X, Feng G, He L (2006) Systematic screening for polymorphisms in the CYP3A4 gene in the Chinese population. Pharmacogenomics 7:831–841

    Article  CAS  PubMed  Google Scholar 

  72. Maekawa K, Harakawa N, Yoshimura T, Kim SR, Fujimura Y, Aohara F, Sai K, Katori N, Tohkin M, Naito M, Hasegawa R, Okuda H, Sawada J, Niwa T, Saito Y (2010) CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. Drug Metab Dispos 38:2100–2104

    Article  CAS  PubMed  Google Scholar 

  73. Suarez-Kurtz G, Perini JA, Bastos-Rodrigues L, Pena SD, Struchiner C (2007) Impact of population admixture on the distribution of the CYP3A5*3 polymorphism. Pharmacogenomics 8:1299–1306

    Article  CAS  PubMed  Google Scholar 

  74. Estrela RC, Santoro AB, Barroso PF, Tuyama M, Suarez-Kurtz G (2008) CYP3A5 genotype has no impact on plasma trough concentrations of lopinavir and ritonavir in HIV-infected subjects. Clin Pharmacol Ther 84:205–207

    Article  CAS  PubMed  Google Scholar 

  75. Willrich MA, Hirata MH, Genvigir FD, Arazi SS, Rebecchi IM, Rodrigues AC, Bernik MM, Dorea EL, Bertolami MC, Faludi AA, Hirata RD (2008) CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta 398:15–20

    Article  CAS  PubMed  Google Scholar 

  76. Silveira VS, Canalle R, Scrideli CA, Queiroz RG, Lopes LF, Tone LG (2012) CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem 364:217–223

    Article  CAS  PubMed  Google Scholar 

  77. Santos PC, Soares RA, Santos DB, Nascimento RM, Coelho GL, Nicolau JC, Mill JG, Krieger JE, Pereira AC (2011) CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet 12:13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125:446–463

    Article  CAS  PubMed  Google Scholar 

  79. Lee SS (2007) The ethical implications of stratifying by race in pharmacogenomics. Clin Pharmacol Ther 81:122–125

    Article  PubMed  Google Scholar 

  80. Nguyen A, Desta Z, Flockhart DA (2007) Enhancing race-based prescribing precision with pharmacogenomics. Clin Pharmacol Ther 81:323–325

    Article  CAS  PubMed  Google Scholar 

  81. Pena SD, Di Pietro G, Fuchshuber-Moraes M, Genro JP, Hutz MH, Kehdy Fde S, Kohlrausch F, Magno LA, Montenegro RC, Moraes MO, de Moraes ME, de Moraes MR, Ojopi EB, Perini JA, Racciopi C, Ribeiro-Dos-Santos AK, Rios-Santos F, Romano-Silva MA, Sortica VA, Suarez-Kurtz G (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One 6:e17063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Dornelles CL, Callegari-Jacques SM, Robinson WM, Weimer TA, Franco MH, Hickmann AC, Geiger CJ, Salzano FM (1999) Genetics, surnames, grandparents’ nationalities, and ethnic admixture in Southern Brazil: do the patterns of variation coincide? Genet Mol Biol 22:151–161

    Article  Google Scholar 

  83. Kudzi W, Dodoo AN, Mills JJ (2009) Characterization of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet 10:124

    Article  PubMed Central  PubMed  Google Scholar 

  84. Suarez-Kurtz G, Pena SDJ (2006) Pharmacogenomics in the Americas: impact of genetic admixture. Curr Drug Targets 7:1649–1658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Brazil) for the fellowship to F.B.K. to perform part of this study in Spain. Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Programa de Apoio a Núcleos de Excelência (PRONEX, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Brazil), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil), Fundação Carlos Chagas Filho de Amparo à pesquisa do Estado do Rio de Janeiro (FAPERJ, Brazil), and FIS grants PI071032 and PI061712 (ISCIII, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana B. Kohlrausch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlrausch, F.B., Carracedo, Á. & Hutz, M.H. Characterization of CYP1A2, CYP2C19, CYP3A4 and CYP3A5 polymorphisms in South Brazilians. Mol Biol Rep 41, 1453–1460 (2014). https://doi.org/10.1007/s11033-013-2990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2990-8

Keywords

Navigation