Skip to main content
Log in

SOCS2 inhibited mitochondria biogenesis via inhibiting p38 MAPK/ATF2 pathway in C2C12 cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In order to investigate the mechanism of suppressor of cytokine signaling 2 (SOCS2) on mitochondrial biogenesis, RNA interference and over-expression plasmid vectors of SOCS2 were used to transfect murine skeletal muscle C2C12 cells. Results demonstrated that over-expression of SOCS2 inhibited the differentiation of C2C12 cells, and reduced the expression of MyHC, MyoD and MyoG while elevated the protein expression of MSTN. Meanwhile the expression of PGC-1α, MDH, CPT-1 were significantly elevated in the RNA interference of SOCS2 group which were decreased in SOCS2 overexpression group. However, there was no change on the expression of UCP1 in both two groups. JC-1 dyeing showed overexpression of SOCS2 decreased the mitochondrial membrane potential and results of immunofluorescence, real-time PCR and western blotting indicated the increase expression of Cyt c, while interference SOCS2 had the opposite effects in C2C12 cells. Moreover, interference of SOCS2 elevated the p38 phosphorylation level then further increased the phosphorylation of ATF2, whereas overexpression of SOCS2 alleviated this phenomenon. Taken together, our observations indicated that SOCS2 could suppress myotube formation, act as an anti-regulator of mitochondria biogenesis via inhibiting p38 MAPK signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greenhalgh CJ, Rico-Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, Zervoudakis P, Metcalf D, Street I, Nicola NA (2005) SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Investig 115:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greenhalgh CJ, Metcalf D, Thaus AL, Corbin JE, Uren R, Morgan PO, Fabri LJ, Zhang J-G, Martin HM, Willson TA (2002) Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. J Biol Chem 277:40181–40184

    Article  CAS  PubMed  Google Scholar 

  3. Rico-Bautista E, Flores-Morales A, Fernández-Pérez L (2006) Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev 17:431–439

    Article  CAS  PubMed  Google Scholar 

  4. Kato H, Nomura K, Osabe D, Shinohara S, Mizumori O, Katashima R, Iwasaki S, Nishimura K, Yoshino M, Kobori M (2006) Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese. Genomics 87:446–458

    Article  CAS  PubMed  Google Scholar 

  5. Puff R, Dames P, Weise M, Göke B, Parhofer K, Lechner A (2010) No non-redundant function of suppressor of cytokine signaling 2 in insulin producing β-cells. Islets 2:252–257

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zadjali F, Santana-Farre R, Vesterlund M, Carow B, Mirecki-Garrido M, Hernandez–Hernandez I, Flodström-Tullberg M, Parini P, Rottenberg M, Norstedt G (2012) SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice. FASEB J 26:3282–3291

    Article  CAS  PubMed  Google Scholar 

  7. Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trend Endocrinol Metab 23:459–466

    Article  CAS  Google Scholar 

  8. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 79:208–217

    Article  CAS  PubMed  Google Scholar 

  9. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  10. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  11. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567

    Article  CAS  PubMed  Google Scholar 

  12. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  13. Zarubin T, Jiahuai H (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-Bonilla V, Perdiguero E, Gresh L, Serrano AL, Zamora M, Sousa-Victor P, Jardí M, Wagner EF, Muñoz-Cánoves P (2008) Efficient adult skeletal muscle regeneration in mice deficient in p38β, p38γ and p38δ MAP kinases. Cell Cycle 7:2208–2214

    Article  CAS  PubMed  Google Scholar 

  15. Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ (2004) p38γ MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 286:R342–R349

    Article  CAS  PubMed  Google Scholar 

  16. Zetser A, Gredinger E, Bengal E (1999) p38 Mitogen-activated protein kinase pathway promotes skeletal muscle differentiation participation of the MEF2C transcription factor. J Biol Chem 274:5193–5200

    Article  CAS  PubMed  Google Scholar 

  17. Röckl KS, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knutti D, Kressler D, Kralli A (2001) Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci USA 98:9713–9718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang C-Y, Krauss S, Mootha VK, Lowell BB, Spiegelman BM (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol Cell 8:971–982

    Article  CAS  PubMed  Google Scholar 

  20. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates PGC-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    Article  CAS  PubMed  Google Scholar 

  21. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S (2004) p38 Mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24:3057–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright DC, Geiger PC, Han D-H, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282:18793–18799

    Article  CAS  PubMed  Google Scholar 

  23. Hu J, Winqvist O, Flores-Morales A, Wikström A-C, Norstedt G (2009) SOCS2 influences LPS induced human monocyte-derived dendritic cell maturation. PLoS One 4:e7178

    Article  PubMed  PubMed Central  Google Scholar 

  24. Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945

    Article  CAS  PubMed  Google Scholar 

  25. Lim J, Lee J, Suh Y, Kim W, Song J, Jung M (2006) Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia 49:1924–1936

    Article  CAS  PubMed  Google Scholar 

  26. Inaba M, Saito H, Fujimoto M, Sumitani S, Ohkawara T, Tanaka T, Kouhara H, Kasayama S, Kawase I, Kishimoto T (2005) Suppressor of cytokine signaling 1 suppresses muscle differentiation through modulation of IGF-I receptor signal transduction. Biochem Biophys Res Commun 328:953–961

    Article  CAS  PubMed  Google Scholar 

  27. Spangenburg EE, Brown DA, Johnson MS, Moore RL (2006) Exercise increases SOCS-3 expression in rat skeletal muscle: potential relationship to IL-6 expression. J Physiol 572:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sadowski CL, Wheeler TT, Wang L-H, Sadowski HB (2001) GH regulation of IGF-I and suppressor of cytokine signaling gene expression in C2C12 skeletal muscle cells. Endocrinology 142:3890–3900

    Article  CAS  PubMed  Google Scholar 

  29. Miller ME, Michaylira CZ, Simmons JG, Ney DM, Dahly EM, Heath JK, Lund PK (2004) Suppressor of cytokine signaling-2: a growth hormone-inducible inhibitor of intestinal epithelial cell proliferation. Gastroenterology 127:570–581

    Article  CAS  PubMed  Google Scholar 

  30. Fruchtman S, Simmons JG, Michaylira CZ, Miller ME, Greenhalgh CJ, Ney DM, Lund PK (2005) Suppressor of cytokine signaling-2 modulates the fibrogenic actions of GH and IGF-I in intestinal mesenchymal cells. Am J Physiol Gastrointest Liver Physiol 289:G342–G350

    Article  CAS  PubMed  Google Scholar 

  31. Czubryt MP, McAnally J, Fishman GI, Olson EN (2003) Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 100:1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kraft CS, LeMoine CM, Lyons CN, Michaud D, Mueller CR, Moyes CD (2006) Control of mitochondrial biogenesis during myogenesis. Am J Physiol Cell Physiol 290:C1119–C1127

    Article  CAS  PubMed  Google Scholar 

  33. Philp A, Belew MY, Evans A, Pham D, Sivia I, Chen A, Schenk S, Baar K (2011) The PGC-1α-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes. Am J Physiol Regul Integr Comp Physiol 301:R864–R872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  36. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648

    Article  CAS  PubMed  Google Scholar 

  37. Hammarstedt A, Jansson P-A, Wesslau C, Yang X, Smith U (2003) Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun 301:578–582

    Article  CAS  PubMed  Google Scholar 

  38. Mitra R, Nogee DP, Zechner JF, Yea K, Gierasch CM, Kovacs A, Medeiros DM, Kelly DP, Duncan JG (2012) The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 52:701–710

    Article  CAS  PubMed  Google Scholar 

  39. Oba T, Yasukawa H, Hoshijima M, Sasaki K-i, Futamata N, Fukui D, Mawatari K, Nagata T, Kyogoku S, Ohshima H (2012) Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 59:838–852

    Article  CAS  PubMed  Google Scholar 

  40. Luo B, Zou T, Lu N, Chai F, Ye X, Wang Y, Qi Y (2011) Role of suppressor of cytokine signaling 3 in lipid metabolism: analysis based on a phage-display human liver cDNA library. Biochem Biophys Res Commun 416:39–44

    Article  CAS  PubMed  Google Scholar 

  41. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504:82–106

    Article  CAS  PubMed  Google Scholar 

  42. Kholmukhamedov A, Schwartz JM, Lemasters JJ (2013) Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats: mitotracker probes and mitochondrial membrane potential. Shock 39:543

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258:1748–1755

    Article  CAS  PubMed  Google Scholar 

  44. Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561

    Article  CAS  PubMed  Google Scholar 

  45. Herlaar E, Brown Z (1999) p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 5:439–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (31172185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Sun.

Additional information

Lu Gan and Zhenjiang Liu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, L., Liu, Z., Zhang, Z. et al. SOCS2 inhibited mitochondria biogenesis via inhibiting p38 MAPK/ATF2 pathway in C2C12 cells. Mol Biol Rep 41, 627–637 (2014). https://doi.org/10.1007/s11033-013-2901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2901-z

Keywords

Navigation