Skip to main content
Log in

PGC-1α is associated with C2C12 Myoblast differentiation

  • Communication
  • Published:
Central European Journal of Biology

Abstract

PGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marfella R., Sasso F.C., Cacciapuoti F., Portoghese M., Rizzo M.R., Siniscalchi M., Carbonara O., Ferraraccio F., Torella M., Petrella A., Balestrieri M.L., Stiuso P., Nappi G., Paolisso G, Tight glycemic control may increase regenerative potential of myocardium during acute infarction, J. Clin. Endocrinol. Metab., 2012, 97, 933–942

    Article  CAS  PubMed  Google Scholar 

  2. Shadrach J.L., Wagers A.J., Stem cells for skeletal muscle repair, Philosophical Transactions B, 2011, 366, 2297–2306

    Article  CAS  Google Scholar 

  3. Shi XZ., Garry D.J., Muscle stem cells in development, regeneration, and disease, Genes & Dev., 2006, 20, 1692–1708

    Article  CAS  Google Scholar 

  4. Gurung R., Parnaik V.K., Cyclin D3 promotes myogenic differentiation and Pax7 transcription, J Cell Biochem., 2012, 113, 209–219

    Article  CAS  PubMed  Google Scholar 

  5. Buckingham M., Making muscle in animals, Trends. Genet., 1992, 8, 144–149

    Article  CAS  PubMed  Google Scholar 

  6. Buck I.M., Skeletal muscle form action in vertebrates, Curr. Opin. Genet. Develop., 2001, 11, 440–452

    Article  Google Scholar 

  7. Brzóska E., Grabowska I., Wróbel E., Moraczewski J., Syndecan-4 distribution during the differentiation of satellite cells isolated from soleus muscle treated by phorbol ester and calphostin C, Cell. Mol. Biol. Lett., 2002, 7, 269–278

    Google Scholar 

  8. Zhu L.N., Ren Y., Chen J.Q, Wang Y.Z., Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts, Gene, 2013, 532, 246–252

    Article  CAS  PubMed  Google Scholar 

  9. Puigserver P., Adelmant G., Wu Z., Fan M., Xu J., O’Malley B., Spiegelman B.M., Activation of PPARγ coactivator-1 through transcription factor docking, Science, 1999, 286, 1368–1371

    Article  CAS  PubMed  Google Scholar 

  10. Kang C.H., Ji L.L, Role of PGC-1α signaling in skeletal muscle health and disease Ann N Y Acad Sci., 2012, 1271(1), 110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LeMoine C.M.R., Lougheed S.C., Moyes C.D., Modular Evolution of PGC-1α in Vertebrates, J. Mol. Evol., 2010, 70, 492–505

    Article  CAS  PubMed  Google Scholar 

  12. Zhu L., Sun G., Zhang H., Zhang Y., Chen X., Jiang X., Krauss S., Zhang J., Xiang Y., Zhang C.Y., PGC-1alpha is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS. One., 2009, 4, e418.

    Google Scholar 

  13. Summermatter S., Troxler H., Santos G., Handschin C., Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity, Biochem. Biophys. Res. Commun., 2011, 408, 180–185

    Article  CAS  PubMed  Google Scholar 

  14. Ventura-Clapier R., Garnier A., Veksler V., Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha, Cardiovasc. Res., 2008, 79, 208–217

    Article  CAS  PubMed  Google Scholar 

  15. Lin J., Puigserver P., Donovan J., Tarr P., Spiegelman B.M., Peroxisome proliferatoractivated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor, J. Biol. Chem., 2002, 277, 1645–1648

    Article  CAS  PubMed  Google Scholar 

  16. Andersson U., Scarpulla R.C., PGC-1 related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1 dependent transcription in mammalian cells, Mol. Cell. Biol., 2001, 21, 3738–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Handschin C., Rhee J., Lin J., Tarr P.T., Spiegelman B.M., An autoregulatory loop controls peroxisome proliferator-activated receptor Γ coactivator 1α expression in muscle, Proc. Natl. Acad. Sci. 2003, 100, 7111–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olsom E.N., Lowell B., Bassed-Duby R., Spiegelman B.M., Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fiber, Nature, 2002, 418, 797–801

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi T., Suzuki T., Arai H., Tanabe S., Atomi Y., Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow, Am.J. Physiol. Cell. Physiol., 2010, 298, 140–148

    Article  Google Scholar 

  20. Ueda M., Watanabe K., Sato K., Akiba Y., Toyomizu M., Possible role for avPGC-1 in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of coldexposed chickens, FEBS. lett., 2005, 579, 11–17

    Article  CAS  PubMed  Google Scholar 

  21. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method, Methods, 2001, 25, 402–408

    Article  CAS  PubMed  Google Scholar 

  22. Phelps1 D.E., Hsiao K.M., Li Y., Hu N.P., Franklin D.S., Westphal E., Lee Eva Y.-H. P., Xiong Y., Coupled transcriptional and translational control of cyclin-dependent kinase inhibitor p18INK4c expression during myogenesis, Mol. Cell. Biol., 1998, 18, 2334–2343

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cowell R.M., Blake K.R., Inoue T., Russell J.W., Regulation of PGC-1α and PGC-1α-responsive genes with forskolin-induced Schwann cell differentiation, Neuroscience Letters, 2008, 439, 269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valero T., Moschopoulou G., Mayor-Lopez L., Kintzios S., Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells, Neurochemistry Int., 2012, 61, 1333–1433

    Article  CAS  Google Scholar 

  25. Uldry M., Yang W.L., St-Pierre J.L., Lin J.D., Seale P., Spiegelman B.M., Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation, Cell Metabolism, 2006, 3, 333–341

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqiu Lin.

Additional information

These authors contributed equally to this paper

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhao, Y., Li, R. et al. PGC-1α is associated with C2C12 Myoblast differentiation. cent.eur.j.biol. 9, 1030–1036 (2014). https://doi.org/10.2478/s11535-014-0341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0341-y

Keywords

Navigation