Skip to main content
Log in

Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heinicke MP, Naylor GJP, Hedges SB (2009) Cartilaginous fishes (Chondrichthyes). In: Hedges SB, Kumar S (eds) The time tree of life. Oxford University Press, New York, p 320

    Google Scholar 

  2. Iglésias SP, Lecointre G, Sellos DY (2005) Extensive paraphylies within sharks of the order Carcharhiniformes inferred from nuclear and mitochondrial genes. Mol Phylogenet Evol 34:569–583

    Article  PubMed  Google Scholar 

  3. Naylor GJP, Ryburn JA, Fedrigo O, Lopez A (2005) Phylogenetic relationships among the major lineages of modern elasmobranchs. In: Hamlett WC, Jamieson BGM (eds) Reproductive biology and phylogeny of chondrichthyes: sharks, batoids, and chimaeras, vol 3. Science Publishers, Inc., Enfield, pp 1–25

    Google Scholar 

  4. Human BA, Owen EP, Compagno LJV, Harley EH (2006) Testing morphologically based phylogenetic theories within the cartilaginous fishes with molecular data, with special reference to the cat shark family (Chondrichthyes; Scyliorhinidae) and the interrelationships within them. Mol Phylogenet Evol 39:384–391

    Article  CAS  PubMed  Google Scholar 

  5. Lopez JA, Ryburn JA, Fedrigo O, Naylor GJ (2006) Phylogeny of sharks of the family Triakidae (Carcharhiniformes) and its implications for the evolution of carcharhiniform placental viviparity. Mol Phylogenet Evol 40:50–60

    Article  CAS  PubMed  Google Scholar 

  6. Cavalcanti MJ (2007) A phylogenetic super tree of the hammerhead sharks (Carcharhiniformes: Sphyrnidae). Zool Stud 46:6–11

    Google Scholar 

  7. Corrigan S, Beheregaray LB (2009) A recent shark radiation: molecular phylogeny, biogeography and speciation of wobbegong sharks (family: Orectolobidae). Mol Phylogenet Evol 52:205–216

    Article  CAS  PubMed  Google Scholar 

  8. Lim DD, Motta P, Mara K, Martin AP (2010) Phylogeny of hammerhead sharks (Family Sphyrnidae) inferred from mitochondrial and nuclear genes. Mol Phylogenet Evol 55:572–579

    Article  PubMed  Google Scholar 

  9. Eitner BJ (1995) Systematics of the genus Alopias (Lamniformes: Alopiidae) with evidence for the existence of an unrecognized species. Copeia 3:562–571

    Article  Google Scholar 

  10. Dosay-Akbulut M (2008) The phylogenetic relationship within the genus Carcharhinus. C R Biol 331:500–509

    Article  CAS  PubMed  Google Scholar 

  11. Stelbrink B, von Rintelen T, Cliff G, Kriwet J (2009) Molecular systematics and global phylogeography of angel sharks (genus Squatina). Mol Phylogenet Evol 54:395–404

    Article  PubMed  Google Scholar 

  12. Sambrook SJ, Russel DW, Janssen KA, Irwuin NJ (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  CAS  PubMed  Google Scholar 

  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for application of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biotechnol 3:294–297

    Google Scholar 

  15. Palumbi SR, Martin AP, Croom H, McMillan WO, Romano S et al (1991) The simple fool’s guide to PCR. University of Hawaii Special Publication, Honolulu

    Google Scholar 

  16. Pank M, Stanhope M, Natanson L, Kohler N, Shivji M (2001) Rapid and simultaneous identification of body parts from the morphologically similar sharks Carcharhinus obscurus and Carcharhinus plumbeus (Carcharhinidae) using multiplex PCR. Mar Biotechnol 3:231–240

    Article  CAS  PubMed  Google Scholar 

  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  18. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72. CRC Press, Washington, DC, pp 3–31

    Google Scholar 

  19. Swofford DL (2003) PAUP: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  20. Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  21. Farris JS, Kallers M, Kluge AG, Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572

    Google Scholar 

  22. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  23. Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–92

    Article  Google Scholar 

  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  25. Huelsenbeck JP, Ronquist F (2003) MR BAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  Google Scholar 

  26. Murphy WJ, Eizirik E, Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  CAS  PubMed  Google Scholar 

  27. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Google Scholar 

  28. Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424

    Article  CAS  PubMed  Google Scholar 

  29. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  CAS  PubMed  Google Scholar 

  30. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  31. Dunn KA, Morrissey JF (1995) Molecular phylogeny of elasmobranchs. Copeia 3:526–531

    Article  Google Scholar 

  32. Kitamura T, Takemura A, Watabe S, Taniuchi T, Shimizu M (1996) Molecular phylogeny of the sharks and rays of superorder Squalea based on mitochondrial cytochrome b gene. Fish Sci 62:340–343

    CAS  Google Scholar 

  33. Arnason U, Gulberg A, Janke A (2001) Molecular phylogenetics of Gnathostomous (jawed) fishes: old bone, new cartilage. Zool Scr 30:249–255

    Article  Google Scholar 

  34. Winchell CJ, Martin AP, Mallatt J (2004) Phylogeny of elasmobranchs based on LSU and SSU ribosomal RNA genes. Mol Phylogenet Evol 31:214–224

    Article  CAS  PubMed  Google Scholar 

  35. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    CAS  PubMed  Google Scholar 

  36. Loomis WF, Smith DW (1990) Molecular phylogeny of Dictyostelium discoideum by protein sequence comparison. Proc Natl Acad Sci USA 87:9093–9097

    Article  CAS  PubMed  Google Scholar 

  37. Kocher TD, Conroy JA, McKaye KR (1995) Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol Phylogenet Evol 4:420–432

    Article  CAS  PubMed  Google Scholar 

  38. Lopez P, Forterre P, Philippe H (1999) The root of the tree of life in the light of the covarion model. J Mol Evol 49:496–508

    Article  CAS  PubMed  Google Scholar 

  39. Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49:509–523

    Article  CAS  PubMed  Google Scholar 

  40. Aguilar C, Sánchez JA (2007) Phylogenetic hypotheses of gorgoniid octocorals according to ITS2 and their predicted RNA secondary structures. Mol Phylogenet Evol 43:774–786

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan J, Holsinger KE, Simonb C (1995) Among site rate variation and phylogenetic analysis of 12S rRNA data in sigmodontine rodents. Mol Biol Evol 12:988–1001

    CAS  PubMed  Google Scholar 

  42. Carstens CB, Lundrigan LB, Myers P (2002) A phylogeny of the neotropical nectar-feeding bats (Chiroptera: Phyllostomidae) based on morphological and molecular data. J Mamm Evol 9:23–53

    Article  Google Scholar 

  43. Köhler F (2011) The camaenid species of the Kimberley Islands, Western Australia (Stylommatophora: Helicoidea). Malacologia 54:203–406

    Article  Google Scholar 

  44. Mahendran B, Ghosh SK, Kundu SC (2006) Molecular phylogeny of silk-producing insects based on 16s ribosomal RNA and cytochrome oxidase subunit I genes. J Genet 85:31–38

    Article  CAS  PubMed  Google Scholar 

  45. Bigelow HB, Schroeder WC (1953) Part 2. Sawfishes, guitarfishes, skates and rays; chimaeroids. In: Tee-Van J et al (eds) Fishes of the western North Atlantic. Sears Foundation for Marine Research, Yale University, New Haven

    Google Scholar 

  46. Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322

    Google Scholar 

  47. deCarvalho MR, Maisey JG (1996) Phylogenetic relationships of the Late Jurassic shark Protospinax Woodward, 1919 (Chondrichthyes:Elasmobranchii). In: Arratia G, Viohl G (eds) Mesozoic fishes: systematics and paleoecology. Verlag Dr. Friedrich Pfiel, Munich, pp 9–46

    Google Scholar 

  48. Deets GB (1994) Copepod-chondricthyan coevolution: a cladistics consideration. Ph.D. Dissertation, University of British Columbia, Vancouver

  49. Shirai S (1996) Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic Press, San Diego, pp 9–34

    Chapter  Google Scholar 

  50. Douady CJ, Dosay M, Shivji MS, Stanhope MJ (2003) Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Mol Phylogenet Evol 26:215–221

    Article  CAS  PubMed  Google Scholar 

  51. Nishida K (1990) Phylogeny of the suborder Myliobatoidei. Mem Fac Fish 37:259–298

    CAS  Google Scholar 

  52. Kriwet J (2004) The systematic position of the Cretaceous sclerorhynchid sawfishes (Elasmobranchii, Pristiorajea). In: Arriata G, Tintori A (eds) Mesozoic fishes, vol 3. Dr. Friedrich Pfeil, Munich, pp 57–73

    Google Scholar 

  53. Compagno LJV (1973) Interrelationship of living elasmobranchs. In: Greenwood PH et al (eds) Interrelationships of fishes. Academic Press, New York, pp 15–61

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Paul Hebert and Dr. Robert Hanner, University of Guelph, Canada and Dr. R. D. Ward, CSIRO Marine and Atmospheric Research, Australia for guidance and support and Indian Council of Agricultural Research, New Delhi for the financial support. We thank three anonymous reviewers for their comments, which strengthened the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pavan-Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan-Kumar, A., Gireesh-Babu, P., Babu, P.P.S. et al. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers. Mol Biol Rep 41, 447–457 (2014). https://doi.org/10.1007/s11033-013-2879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2879-6

Keywords

Navigation