Skip to main content
Log in

Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkworm species that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA andcoxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) forcoxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S. E., Gish W., Miller W., Myers E. W. and Lipman D. J. 1990 Basic local alignment search tool.J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Bhagirath T. H., Kundu S. C. and Ibotombi N. 1988 Ultimate karyotype of the hybrid betweenAntheraea pernyi andA. roylei.Sericologia 28, 91–94.

    Google Scholar 

  • Blum M. J., Bermingham E. and Dasmahapatra K. 2003 A molecular phylogeny of the neotropical butterfly genusAnartia (Lepidoptera: Nymphalidae).Mol. Phylogenet. Evol. 26, 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Brower A. V. Z. 1994 Phylogeny ofHeliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae).Mol. Phylogenet. Evol. 3, 159–174.

    Article  CAS  Google Scholar 

  • Canapa A., Barucca M., Marinelli A. and Olmo E. 2000 Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia).J. Mol. Evol. 50, 93–97.

    PubMed  CAS  Google Scholar 

  • Chatterjee S. N. and Tanushree T. 2004 Molecular profiling of silk-worm biodiversity in India: an overview.Genetica (Russian)10, 1–9.

    Google Scholar 

  • Datta A., Ghosh A. K. and Kundu S. C. 2001 Differential expression of fibroin gene in developmental stages of silkwormA. mylitta (Saturniidae).Comp. Biochem. Physiol. B129, 197–204.

    Google Scholar 

  • Davies N. and Bermingham E. 2002 The historical biogeography of two Caribbean butterflies (Lepidoptera: Heliconiidae) as inferred from genetic variation at multiple loci.Evolution 56, 573–589.

    PubMed  CAS  Google Scholar 

  • Deodikar G. B., Chowdhury S. N., Bhuyan B. N. and Kshirsagar K. K. 1962 Cytogenetic studies in Indian silkworms. Chromosome number in muga silkworm,A. assamensis WW.Curr. Sci. 31, 147–148.

    Google Scholar 

  • Dobler S. and Muller J. K. 2000 Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: Phylogeny of carrion beetles (Coleoptera, Silphidae).Mol. Phylogenet. Evol. 15, 390–402.

    Article  PubMed  CAS  Google Scholar 

  • Farris J. S. 1989 The retention index and homoplasy excess.Syst. Zool. 38, 406–407.

    Article  Google Scholar 

  • Felsenstein J. 1985 Congruence limits on phylogenies: An approach using the bootstrap.Evolution 39, 783–791.

    Article  Google Scholar 

  • Friedlander T. P., Horst K. R., Regier J. C., Mitter C., Peigler R. S. and Fang Q. Q. 1998 Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturniidae).Mol. Phylogenet. Evol. 9, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith M. R., Shimada T. and Abe H. 2005 The genetics and genomics of the silkworm,Bombyx mori.Annu. Rev. Entomol. 50, 71–100.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths C. 1997 Correlation of functional domains and rates of nucleotide substitution in cytochromeb.Mol. Phylogenet. Evol. 7, 352–365.

    Article  PubMed  CAS  Google Scholar 

  • Gupta K. S. 1985 Non-mulberry sericulture—its problems and prospects.Sericologia 25, 89–94.

    Google Scholar 

  • Guryev V., Makarevitch I., Blinov A. and Martin J. 2001 Phylogeny of the genusChironomus (Diptera) inferred from DNA sequences of mitochondrial cytochromeb and cytochrome oxidase I.Mol. Phylogenet. Evol. 19, 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Han H.-Y. 2000 Molecular phylogenetic study of the tribe Trypetini (Diptera: Tephritidae), using mitochondrial 16S ribosomal DNA sequences.Biochem. Syst. Ecol. 28, 501–513.

    Article  PubMed  CAS  Google Scholar 

  • Hwang J. S., Lee J. S., Goo T. W., Yun E. Y., Sohn H. Y., Kim H. R. and Kwon O. Yu. 1999a Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondrial DNA encoding of large and small rRNA.Genet. Anal. Biomol. Eng. 15, 223–228.

    Article  CAS  Google Scholar 

  • Hwang J. S., Lee J. S., Goo T. W., Kang H. A., Yun E. Y., Sohn H. Y., Kim H. R. and Kwon O. Yu. 1999b The comparative molecular study between Bombycidae and Saturniidae based on mtDNA RFLP and cytochrome oxidase I gene sequences: Implication for molecular evolution.Z. Naturforsch. C54, 587–594.

    Google Scholar 

  • Jolly M. S. and Sen S. K. 1969 Patterns of follicular imprints in egg shell—a species-specific character inAntheraea.I. Bull. Entomol. 10, 32–38.

    Google Scholar 

  • Jolly M. S., Narasimhanna M. N., Sinha S. S. and Sen S. K. 1969 Interspecific hybridization inAntheraea.Indian J. Hered. 1, 45–48.

    Google Scholar 

  • Jolly M. S., Narasimhanna M. N. and Wartkar V. B. 1970a Arrangement of tubercular setae inAntheraea species (Lepidoptera: Saturniidae).Entomologist 103, 18–23.

    Google Scholar 

  • Jolly M. S., Sen S. K. and Sinha S. S. 1970b Chromosome number in the Indian oak feeding tasar silkworm A.proylei Mr.Curr. Sci. 39, 423–424.

    Google Scholar 

  • Jolly M. S., Sen S. K. and Ahsan M. M. 1974Tasar culture. Ambika Publishers, Bombay.

    Google Scholar 

  • Kluge A. G. and Farris J. S. 1969 Quantitative phyletics and the evolution of anurans.Syst. Zool. 18, 1–32.

    Article  Google Scholar 

  • Kumar S., Tamura K., Jakobsen I. B. and Nei M. 2001 MEGA 2.1, molecular evolutionary genetics analysis software.Bioinformatics 17, 1244–1245.

    Article  PubMed  CAS  Google Scholar 

  • Nagaraju J. and Goldsmith M. R. 2002 Silkworm genomics— progress and prospects.Curr. Sci. 83, 415–425.

    CAS  Google Scholar 

  • Nagaraju J. and Jolly M. S. 1985 Interspecific hybrids ofAntheraea roylei andA. pernyi—a cytogenetic reassessment.Theor. Appl. Genet. 72, 269–273.

    Article  Google Scholar 

  • Niehuis O. and Wagele J. W. 2004 Phylogenetic analysis of the mitochondrial genes LSU rRNA and COI suggests early adaptive differentiation of anal teeth in chrysidine cuckoo wasps (Hymenoptera: Chrysidae).Mol. Phylogenet. Evol. 30, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Posada D. and Crandall K. A. 1998 MODELTEST: testing the model of DNA substitution.Bioinformatics 14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Prasad M. D., Nurminsky D. L. and Nagaraju J. 2002 Characterization and molecular phylogenetic analysis ofmariner elements from wild and domesticated species of silkworms.Mol. Phylogenet. Evol. 25, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Reddy K. D., Abraham E. G. and Nagaraju J. 1999 Genetic characterization of the silkworm,Bombyx mori, by inter-simple sequence repeat (ISSR)-anchored PCR.Heredity 83, 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Regier J. C., Mitter C., Peigler R. S. and Friedlander T. P. 2002 Monophyly, composition, and relationships within Saturniinae (Lepidoptera: Saturniidae): Evidence from two nuclear genes.Insect Syst. Evol. 33, 9–21.

    Article  Google Scholar 

  • Sambrook J. and Russell D. W. 2001Molecular cloning: a laboratory manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Shimada T., Kurimoto Y and Kobayashi M. 1995 Phylogenetic relationship of silk moths inferred from sequence data of the arylphorin gene.Mol. Phylogenet. Evol. 4, 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Shouche Y. S. and Patole M. 2000 Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species.J. Biosci. 25, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Sinha A. K., Sinha R. K., Goel A. K., Sinha B. R. R. P. and Thangavelu K. 1994 A review on the breeding and genetic aspects of tropical tasar silkworm,Antheraea mylitta D.Proc. Con. Cytol. Genet. 4, 7–16.

    Google Scholar 

  • Swofford D. L. 2001 PAUP phylogenetic analysis using parsimony (and other methods), Ver. 4. Sinauer Associates, Sunderland, USA.

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucl. Acids Res. 22, 221–244.

    Article  Google Scholar 

  • Whitfield J. B. and Cameron S. A. 1998 Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera.Mol. Biol. Evol. 15, 1728–1743.

    PubMed  CAS  Google Scholar 

  • Yukuhiro K., Sezutsu H., Itoh M., Shimizu K. and Banno Y 2002 Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth,Bombyx mandarina, and its close relative, the domesticated silkmoth,Bombyx mori.Mol. Biol. Evol. 19, 1385–1389.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahendran, B., Ghosh, S.K. & Kundu, S.C. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes. J Genet 85, 31–38 (2006). https://doi.org/10.1007/BF02728967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728967

Keywords

Navigation