Skip to main content
Log in

A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys60 located in the conserved active site is the putative active peroxidatic Cys. The role of Cys31 was investigated by site-directed mutagenesis. The C31S mutant (C31 → S31) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys31 in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C31 residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  CAS  PubMed  Google Scholar 

  2. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424:561–565

    Article  CAS  PubMed  Google Scholar 

  3. Hall A, Nelson K, Poole LB, Karplus PA (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15:795–815

    Article  CAS  PubMed  Google Scholar 

  4. Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287:4403–4410

    Article  CAS  PubMed  Google Scholar 

  5. Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    Article  CAS  PubMed  Google Scholar 

  6. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  PubMed  Google Scholar 

  7. Ellis HR, Poole LB (1997) Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36:13349–13356

    Article  CAS  PubMed  Google Scholar 

  8. Dietz KJ (2011) Plant peroxiredoxins and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  PubMed  Google Scholar 

  9. Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with πGST. Proc Natl Acad Sci USA 101:3780–3785

    Article  CAS  PubMed  Google Scholar 

  10. Chon JK, Choi J, Kim SS, Shin W (2005) Classification of peroxiredoxin subfamilies using regular expressions. Genomics Inform 3:55–60

    Google Scholar 

  11. Chae HZ, Uhm TB, Rhee SG (1994) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci USA 1:7022–7026

    Article  Google Scholar 

  12. Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    Article  CAS  PubMed  Google Scholar 

  13. Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF (2009) Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 121:194–212

    Article  PubMed  Google Scholar 

  14. Chang TT, Chou WN (1995) Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol Res 99:756–758

    Article  Google Scholar 

  15. Wu SH, Ryvarden L, Chang TT (1997) Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin 38:273–275

    Google Scholar 

  16. Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY (2004) Taiwanofungus, a polypore new genus. Fungal Sci 19:109–116

    Google Scholar 

  17. Hseu YC, Yang HL, Lai YC, Lin JG, Chen GW, Chang YH (2004) Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutr Cancer 48:189–197

    Article  PubMed  Google Scholar 

  18. Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC (2005) Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221:77–89

    Article  CAS  PubMed  Google Scholar 

  19. Geethangili M, Tzeng YM (2011) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Altern Med 2011. doi:10.1093/ecam/nep108

  20. Wen L, Huang HM, Juang RH, Lin CT (2007) Biochemical characterization of 1-Cys peroxiredoxin from Antrodia camphorata. Appl Microbiol Biotechnol 73:1314–1322

    Article  CAS  PubMed  Google Scholar 

  21. Huang JK, Ken CF, Huang HM, Lin CT (2007) Biochemical characterization of a novel 2-Cys peroxiredoxin from Antrodia camphorata. Appl Microbiol Biotechnol 74:84–92

    Article  CAS  PubMed  Google Scholar 

  22. Liau YJ, Wen L, Shaw JF, Lin CT (2007) A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties. J Biotechnol 131:84–91

    Article  CAS  PubMed  Google Scholar 

  23. Ken CF, Chen HT, Chang RC, Lin CT (2008) Biochemical characterization of a catalase from Antrodia camphorata: expression in Escherichia coli and enzyme properties. Bot Stud 49:119–125

    CAS  Google Scholar 

  24. Chen HT, Lin CY, Ken CF, Wen L, Lin CT (2009) Putative phospholipid hydroperoxide glutathione peroxidase from Antrodia camphorata. Food Chem 115:476–482

    Article  CAS  Google Scholar 

  25. Liau YJ, Chen YT, Lin CY, Huang JK, Lin CT (2010) Characterization of 2-Cys peroxiredoxin isozyme (Prx1) from Taiwanofungus camphorata (Niu-chang-chih): expression and enzyme properties. Food Chem 119:154–160

    Article  CAS  Google Scholar 

  26. Trivelli X, Krimm I, Ebel C, Verdoucq L, Prouzet-Mauléon V, Chartier Y, Tsan P, Lauquin G, Meyer Y, Lancelin JM (2003) Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR. Biochemistry 42:14139–14149

    Article  CAS  PubMed  Google Scholar 

  27. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  PubMed  Google Scholar 

  28. Meyer AS, Isaksen A (1995) Application of enzymes as food antioxidants. Trends Food Sci Technol 6:300–304

    Article  CAS  Google Scholar 

  29. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  30. Echalier A, Trivelli X, Corbier C, Rouhier N, Walker O, Tsan P, Jacquot JP, Aubry A, Krimm I, Lancelin JM (2005) Crystal structure and solution NMR dynamics of a D (type II) peroxiredoxin glutaredoxin and thioredoxin dependent: a new insight into the peroxiredoxin oligomerism. Biochemistry 44:1755–1767

    Article  CAS  PubMed  Google Scholar 

  31. Ken CF, Hsiung TM, Huang ZX, Juang RH, Lin CT (2005) Characterization of Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. J Agric Food Chem 53:1470–1474

    Article  CAS  PubMed  Google Scholar 

  32. Thurman RG, Ley HG, Scholz R (1972) Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem 25:420–430

    Article  CAS  PubMed  Google Scholar 

  33. Scheffé H (1959) The analysis of variance. Wiley, New York

    Google Scholar 

  34. Manevich Y, Sweitzer TD, Pak JH, Feinstein SI, Muzykantov VR, Fisher AB (2002) 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci USA 99:11599–11604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of the Republic of China, Taiwan under Grant NSC 100-2313-B-019-003-MY3 to C.-T. Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Tsai Lin.

Additional information

Chih-Yu Huang, Yu-Ting Chen and Lisa Wen contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Chen, YT., Wen, L. et al. A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization. Mol Biol Rep 41, 155–164 (2014). https://doi.org/10.1007/s11033-013-2848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2848-0

Keywords

Navigation