Skip to main content
Log in

Interaction of artemisinin and its derivatives with human serum albumin studied using spectroscopies and molecular modeling methods

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The interactions of artemisinins including artemisinin, dihydroartemisinin, artemether and artesunate with human serum albumin (HSA) were studied by fluorescence spectroscopy, UV–Vis absorption spectroscopy, synchronous fluorescence, three-dimensional fluorescence, circular dichroism (CD) and molecular modeling. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that the artemisinins had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, the association constants K a and the corresponding thermodynamic parameters ΔH, ΔG and ΔS at various temperatures were also calculated. Based on the mechanism of Förster’s non-radiative energy transfer theory, the distance between the acceptors and HSA were found. In addition, alteration of the secondary structure of HSA in the presence of the artemisinins was tested by CD spectroscopy. Molecular modeling revealed that the artemisinins were bounded in the large hydrophobic cavity of the site I of HSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang YZ, Asawamahasakda W, Meshnick SR (1993) Alkylation of human albumin by the antimalarial artemisinin. Biochem Pharmacol 46:336–339

    Article  PubMed  CAS  Google Scholar 

  2. Fishwick J, McLean WG, Edwards G, Ward SA (1995) The toxicity of artemisinin and related compounds on neuronal and glial cells in culture. Chem Biol Interact 96:263–271

    Article  PubMed  CAS  Google Scholar 

  3. Wesche DL, DeCoster MA, Tortella FC, Brewer TG (1994) Neurotoxicity of artemisinin analogs in vitro. Antimicrob Agents Chemother 38:1813–1819

    Article  CAS  Google Scholar 

  4. Bian H, Li M, Yu Q, Chen Z, Tian J, Liang H (2006) Study of the interaction of artemisinin with bovine serum albumin. Int J Biol Macromol 39:291–297

    Article  PubMed  CAS  Google Scholar 

  5. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  Google Scholar 

  6. Squella JA, Becerra R, Nunez-Vergara LJ (1987) Polarography: a new tool in the elucidation of drug-albumin interactions. Biochem Pharmacol 36:3531–3533

    Article  PubMed  CAS  Google Scholar 

  7. Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Academic Press, San Diego, pp 1–40

    Book  Google Scholar 

  8. Varshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH (2010) Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality 22:77–87

    Article  PubMed  CAS  Google Scholar 

  9. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  10. Petitpas I, Grüne T, Bhattacharya AA, Curry S (2001) Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol 314:955–960

    Article  PubMed  CAS  Google Scholar 

  11. Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37:57–84

    PubMed  CAS  Google Scholar 

  12. Hervé F, Urien S, Albengres E (1994) Drug binding in plasma. A summary of recent tends in the study of drug and hormone binding. Clin Pharmacokinet 26:44–58

    Article  PubMed  Google Scholar 

  13. Bogdan M, Pimau A, Floare C (2008) Binding interaction of indomethacin with human serum albumin. J Pharm Biomed Anal 47:981–984

    Article  PubMed  CAS  Google Scholar 

  14. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248

    Article  PubMed  CAS  Google Scholar 

  15. Zhang GJ, Keita B, Craescu CT, Miron S, de Oliveira P, Nadjo L (2008) Molecular interactions between Wells-Dawson type polyoxometalates and human serum albumin. Biomacromolecules 9:812–817

    Article  PubMed  CAS  Google Scholar 

  16. Gentili PL, Ortica F, Favaro G (2008) Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV–Visible absorption and fluorescence spectroscopy. J Phys Chem B 112:16793–16801

    Article  PubMed  CAS  Google Scholar 

  17. Wang F, Huang W, Dai ZX (2008) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 875:509–514

    Article  CAS  Google Scholar 

  18. Chakraborty B, Basu S (2009) Interaction of BSA with proflavin: a spectroscopic approach. J Lumin 129:34–39

    Article  CAS  Google Scholar 

  19. Ferrer EG, Bosch A, Yantorno O, Baran EJ (2008) A spectroscopy approach for the study of the interactions of bioactive vanadium species with bovine serum albumin. Bioorg Med Chem 16:3878–3886

    Article  PubMed  CAS  Google Scholar 

  20. Kathiravan A, Chandramohan M, Renganathan R, Sekar S (2009) Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin. J Mol Struct 919:210–214

    Article  CAS  Google Scholar 

  21. Kalanur SS, Seetharamappa J, Kalalbandi VK (2010) Characterization of interaction and the effect of carbamazepine on the structure of human serum albumin. J Pharm Biomed Anal 53:660–666

    Article  PubMed  CAS  Google Scholar 

  22. Matei I, Hillebrand M (2010) Interaction of kaempferol with human serum albumin: a fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773

    Article  PubMed  CAS  Google Scholar 

  23. Fotouhi L, Banafsheh S, Heravi MM (2009) Electrochemistry of the interaction of furazolidone and bovine serum albumin. Bioelectrochemistry 77:26–30

    Article  PubMed  CAS  Google Scholar 

  24. Równicka-Zubik J, Sulkowska A, Pożycka J, Gaździcka K, Bojko B, Maciażek-Jurczyk M, Sulkowski WW (2009) Fluorescence analysis of sulfasalazine bound to defatted serum albumin in the presence of denaturation factors. J Mol Struct 924–26:371–377

    Article  Google Scholar 

  25. Channu BC, Kalpana HN, Eregowda GB, Dass C, Houghton PJ, Thimmaiah KN (1999) Interaction of substituted phenoxazine chemosensitizers with bovine serum albumin. J Pharm Biomed Anal 21:775–785

    Article  PubMed  CAS  Google Scholar 

  26. Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  27. Silva D, Cortez CM, Cunha-Bastos J, Louro SR (2004) Methyl parathion interaction with human and bovine serum albumin. Toxicol Lett 147:53–61

    Article  CAS  Google Scholar 

  28. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem 276:22804–22809

    Article  PubMed  CAS  Google Scholar 

  29. Morris G (2002) SYBYL Software, Version 6.9. Louis, St., Tripos Associates

  30. Lakowicz JR (2008) Principles of fluorescence spectroscopy, 3rd edn. Plenum Press, New York, p 277

    Google Scholar 

  31. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, pp 237–265

    Book  Google Scholar 

  32. Ahmad B, Khan RH (2006) Studies on the acid unfolded and molten globule states of catalytically active stem bromelain: a comparison with catalytically inactive form. J Biochem 140:501–508

    Article  PubMed  CAS  Google Scholar 

  33. Hu YJ, Liu Y, Zhao RM, Dong JX, Qu SS (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photoch Photobio A 179:324–329

    Article  CAS  Google Scholar 

  34. Wang J, Zhang YY, Guo Y, Zhang L, Xu R, Xing ZQ, Wang SX, Zhang XD (2009) Interaction of bovine serum albumin with acridine orange (C.I. basic orange 14) and its sonodynamic damage under ultrasonic irradiation. Dyes Pigment 80:271–278

    Article  CAS  Google Scholar 

  35. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  36. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J Fluoresc 18:109–118

    Article  PubMed  CAS  Google Scholar 

  37. Yang MM, Qin X, Xi XL (2006) Study of the interaction of cephalosporin class medicine with albumin by fluorescence enhancement and fluorescence quenching theories. Chin J Chem 24:642–648

    Article  CAS  Google Scholar 

  38. Zhao H, Ge M, Zhang Z, Wang W, Wu G (2006) Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim Acta Mol Biomol Spectrosc 65:811–817

    Article  Google Scholar 

  39. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  PubMed  CAS  Google Scholar 

  40. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  41. Förster T (1948) Energy transfer and fluorescence between molecules. Ann Phys 437:55–75

    Article  Google Scholar 

  42. Mahammed A, Gray HB, Weaver JJ, Sorasaenee K, Gross Z (2004) Amphiphilic corroles bind tightly to human serum albumin. Bioconjug Chem 15:738–746

    Article  PubMed  CAS  Google Scholar 

  43. Cyril L, Earl JK, Sperry WM (1961) Biochemists’ handbook. E & FN Spon, London, p 84

    Google Scholar 

  44. Valeur B, Brochom JC (2001) New trends in fluorescence spectroscopy. Springer, Berlin, p 25

    Book  Google Scholar 

  45. Alexander V, Pastukhov V, Levchenko LA, Sadkov AP (2007) Spectroscopic study on binding of rutin to human serum albumin. J Mol Struct 842:60–66

    Article  Google Scholar 

  46. Yang P, Gao F (2002) The principle of bioinorganic chemistry. Science Press, Beijing, p 349

    Google Scholar 

  47. Kamat BP, Seetharamappa J (2004) In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J Pharm Biomed Anal 35:655–664

    Article  PubMed  CAS  Google Scholar 

  48. Lu ZX, Cui T, Shi QL (1987) Applications of circular dichroism (CD) and optical rotatory dispersion (ORD) in molecular biology, 1st edn. Science Press, Beijing

    Google Scholar 

  49. Hu YJ, Liu Y, Wang JB, Xiao XH, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  PubMed  CAS  Google Scholar 

  50. Congdon RW, Muth GW, Splittqerber AG (1993) The binding interaction of coomassie blue with proteins. Anal Biochem 213:407–413

    Article  PubMed  CAS  Google Scholar 

  51. Wang YQ, Tang BP, Zhang HM, Zhou QH, Zhang GC (2009) Studies on the interaction between imidacloprid and human serum albumin: spectroscopic approach. J Photochem Photobiol B 94:183–190

    Article  PubMed  CAS  Google Scholar 

  52. Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159

    Article  CAS  Google Scholar 

  53. Tian J, Liu J, Hu Z, Chen X (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  PubMed  CAS  Google Scholar 

  54. Bojesen IN, Hansen HS (2003) Binding of anandamide to bovine serum albumin. J Lipid Res 44:1790–1794

    Article  PubMed  CAS  Google Scholar 

  55. Hou HN, Qi ZD, Ouyang YW, Liao FL, Zhang Y, Liu Y (2008) Studies on interaction between Vitamin B12 and human serum albumin. J Pharm Biomed Anal 47:134–139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge our institute to provide the Fluorescence Spectrofluorimeter and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlin Pu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Jiang, H. & Pu, H. Interaction of artemisinin and its derivatives with human serum albumin studied using spectroscopies and molecular modeling methods. Mol Biol Rep 40, 4791–4804 (2013). https://doi.org/10.1007/s11033-013-2575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2575-6

Keywords

Navigation