Skip to main content

Advertisement

Log in

Effect of FAK, DLC-1 gene expression on OVCAR-3 proliferation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The study investigates the effect of FAK, DLC-1 on OVCAR-3 proliferation. FAK gene siRNA vector recombinant plasmid was constructed using RNA interference technique. FAK gene-transfected OVCAR-3 cells, OVCAR-3 cells with DLC-1 gene expression, and OVCAR-3 cells with simultaneous expression of DLC-1 and FAK genes were obtained using gene transfection technology. In addition, siRNA control group and blank control were also given. Effect of FAK, DLC-1 gene expression on OVCAR-3 proliferation was examined by FCM and Cell Counting Kit-8 (CCK-8) methods. Results showed that DLC-1 gene high expression and FAK gene silencing, single silencing FAK gene, and single DLC-1 gene high expression in OVCAR-3 cells may decrease S and G2/M phase proportion of the cell cycle. Moreover, DLC-1 gene high expression and FAK gene silencing in OVCAR-3 cells can display the most significant effect. This confirmed that DLC-1 gene high expression and FAK gene silencing may significantly inhibit the OVCAR-3 cells proliferation. CCK-8 analysis showed that silence FAK gene exprssion or/and increasing DLC-1 gene expression may decrease OVCAR-3 growth rate. Moreover, simultaneous silence the exprssion of FAK gene and high expression of DLC-1 gene can display the most significant effect on OVCAR-3 growth. It can be concluded that downregulation of FAK gene expression or/and upregulation of DLC-1 gene expression can all inhibit the OVCAR-3 growth. Moreover, DLC-1 gene expression and FAK gene silencing can display the most marked inhibitory effect on the OVCAR-3 growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Vasey PA (2003) Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer 89(Suppl 3):S23–S28

    Article  PubMed  CAS  Google Scholar 

  3. Ozols RF, Schwartz PE, Eifel PJ (2001) Ovarian cancer, fallopian tube carcinoma, and peritoneal carcinoma. In: DeVita Jr VT, Hellman S, Rosenberg SA (eds) Cancer: principals and practice of oncology, 6th edn, vol 2. Lippincott, Williams, and Wilkins, Philadelphia, p 1597

  4. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134:793–799

    Article  PubMed  CAS  Google Scholar 

  5. Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, Simkins S, Xu L (2000) Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6:2417–2423

    PubMed  CAS  Google Scholar 

  6. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55:2752–2755

    PubMed  CAS  Google Scholar 

  7. Gabarra-Niecko V, Schaller M, Dunty J (2003) FAK regulates biological processes important for the pathogenesis of cancer. Cancer Met Rev 22:359–374

    Article  CAS  Google Scholar 

  8. Hall JE, Fu W, Schaller MD (2011) Chapter five—focal adhesion kinase: exploring FAK structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225

    Article  PubMed  CAS  Google Scholar 

  9. Pylayeva Y, Gillen KM, Gerald W, Beggs HE, Reichardt LF, Giancotti FG (2009) Ras- and PI3 K dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest 119:252–266

    PubMed  CAS  Google Scholar 

  10. Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJ (2004) Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165:1087–1095

    Article  PubMed  CAS  Google Scholar 

  11. Halder J, Kamat AA, Landen CN Jr, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK (2006) Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 12:4916–4924

    Article  PubMed  CAS  Google Scholar 

  12. Lau M-T, So W-K, Leung PCK (2012) Integrin β1 mediates epithelial growth factor-induced invasion in human ovarian cancer cells. Cancer Lett 320:198–204

    Article  PubMed  CAS  Google Scholar 

  13. Vadali K, Cai X, Schaller MD (2007) Focal adhesion kinase: an essential kinase in the regulation of cardiovascular functions. IUBMB Life 59:709–716

    Article  PubMed  CAS  Google Scholar 

  14. Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R, Coleman RL, Gershenson DM, Jaffe RB, Birrer MJ, Sood AK (2007) Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67:1757–1768

    Article  PubMed  CAS  Google Scholar 

  15. Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC (1998) Cloning characterization and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res 58:2196–2199

    PubMed  CAS  Google Scholar 

  16. Durkin ME, Avner MR, Huh CG, Yuan BZ, Thorgeirsson SS, Popescu NC (2005) DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Lett 579:1191–1196

    Article  PubMed  CAS  Google Scholar 

  17. Jin QY, Gao GF, Mulder KM (2012) Requirement of a dynein light chain in transforming growth factor β signaling in zebrafish ovarian follicle cells. Mol Cell Endocrinol 348:233–240

    Article  PubMed  Google Scholar 

  18. Ng IO, Liang ZD, Cao L, Lee TK (2000) DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1. Cancer Res 60:6581–6584

    PubMed  CAS  Google Scholar 

  19. Heering J, Erlmann P, Olayioye MA (2009) Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Exp Cell Res 315:2505–2514

    Article  PubMed  CAS  Google Scholar 

  20. Vanparys C, Maras M, Lenjou M, Robbens J, Van Bockstaele D, Blust R, De Coen W (2006) Flow cytometric cell cycle analysis allows for rapid screening of estrogenicity in MCF-7 breast cancer cells. Toxicol In Vitro 20:1238–1248

    Article  PubMed  CAS  Google Scholar 

  21. Charrière K, Risold P-Y, Fellmann D (2010) In vitro interactions between bone marrow stromal cells and hippocampal slice cultures. CR Biol 333:582–590

    Article  Google Scholar 

  22. Lambeth LS, Moore RJ, Muralitharan MS, Doran TJ (2007) Suppression of bovine viral diarrhea virus replication by small interfering RNA and short hairpin RNA-mediated RNA interference. Vet Microbiol 119:132–143

    Article  PubMed  CAS  Google Scholar 

  23. McLean GW, Avizienyte E, Frame MC (2003) Focal adhesion kinase as a potential target in oncology. Expert Opin Pharmacother 4:227–234

    Article  PubMed  CAS  Google Scholar 

  24. Kim TY, Jong HS, Song SH, Dimtchev A, Jeong SJ, Lee JW, Kim TY, Kim NK, Jung M, Bang YJ (2003) Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene 22:3943–3951

    Article  PubMed  CAS  Google Scholar 

  25. Guan M, Zhou X, Soulitzis N, Spandidos DA, Popescu NC (2006) Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clin Cancer Res 12:1412–1419

    Article  PubMed  CAS  Google Scholar 

  26. Kim TY, Lee JW, Kim HP, Jong HS, Kim TY, Jung M, Bang YJ (2007) DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun 355:72–77

    Article  PubMed  CAS  Google Scholar 

  27. Sekimata M, Kabuyama Y, Emori Y, Homma Y (1999) Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. J Biol Chem 274:17757–17762

    Article  PubMed  CAS  Google Scholar 

  28. Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY, Ng IO (2005) Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65:8861–8868

    Article  PubMed  CAS  Google Scholar 

  29. Yam JW, Ko FC, Chan CY, Jin DY, Ng IO (2006) Interaction of deleted in liver cancer 1 with tensin in caveolaeand implications in tumor suppression. Cancer Res 66:8367–8372

    Article  PubMed  CAS  Google Scholar 

  30. Goodison S, Yuan J, Sloan D, Kim R, Li C, Popescu NC, Urquidi V (2005) The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65:6042–6053

    Article  PubMed  CAS  Google Scholar 

  31. Agochiya M, Brunton VG, Owens DW, Parkinson EK, Paraskeva C, Keith WN, Frame MC (1999) Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18:5646–5653

    Article  PubMed  CAS  Google Scholar 

  32. Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540:1–21

    Article  PubMed  CAS  Google Scholar 

  33. Richardson A, Parsons JT (1995) Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 17:229–236

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez-Fernandez JL, Rozengurt E (1998) Bombesin, vasopressin, lysophosphatidic acid, and sphingosylphosphorylcholine induce focal adhesion kinase activation in intact Swiss 3T3 cells. J Biol Chem 273:19321–19328

    Article  PubMed  CAS  Google Scholar 

  35. Owen JD, Ruest PJ, Fry DW, Hanks SK (1999) Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19:4806–4818

    PubMed  CAS  Google Scholar 

  36. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    Article  PubMed  CAS  Google Scholar 

  37. Sieg DJ, Hauck CR, Schlaepfer DD (1999) Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 112(Pt 16):2677–2691

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by Medicine science Key plan of major project of Henan province (No. 20090113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huirong Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Shi, H., Hao, Y. et al. Effect of FAK, DLC-1 gene expression on OVCAR-3 proliferation. Mol Biol Rep 39, 10665–10670 (2012). https://doi.org/10.1007/s11033-012-1956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1956-6

Keywords

Navigation