Skip to main content
Log in

Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

F-box proteins, components of the Skp1–Cullin1–F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains. F-box proteins regulate plant development, various hormonal signal transduction processes, circadian rhythm, and cell cycle control. We isolated an F-box protein gene from wheat spikes at the onset of flowering. The Triticum aestivum cyclin F-box domain (TaCFBD) gene showed elevated expression levels during early inflorescence development and under cold stress treatment. TaCFBD green fluorescent protein signals were localized in the cytoplasm and plasma membrane. We used yeast two-hybrid screening to identify proteins that potentially interact with TaCFBD. Fructose bisphosphate aldolase, aspartic protease, VHS, glycine-rich RNA-binding protein, and the 26S proteasome non-ATPase regulatory subunit were positive candidate proteins. The bimolecular fluorescence complementation assay revealed the interaction of TaCFBD with partner proteins in the plasma membranes of tobacco cells. Our results suggest that the TaCFBD protein acts as an adaptor between target substrates and the SCF complex and provides substrate specificity to the SCF of ubiquitin ligase complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AP:

Aspartic proteinase

BiFC:

Bimolecular fluorescence complementation

DAF:

Days after flowering

FBP:

Fructose-bisphosphate aldolase

GA3 :

Gibberellic acid

GFP:

Green fluorescent protein

MeJA:

Methyl jasmonate

MES:

2-(Morpholino)ethanesulfonic acid

OD:

Optical density

PEG:

Polyethylene glycol

SCF:

SKP1–Cullin–F-box

TaCFBD:

Triticum aestivum cyclin F-box domain protein

whGRP:

Glycine-rich RNA-binding protein

26S:

26S proteasome non-ATPase regulatory subunit

References

  1. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  2. Schulze H, Kolter T, Sandhoff K (2009) Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta (BBA)-Mol Cell Res 1793:674–683

    Article  CAS  Google Scholar 

  3. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  PubMed  CAS  Google Scholar 

  4. Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  PubMed  CAS  Google Scholar 

  5. Moon J, Parry G, Estelle M (2004) The ubiquitin–proteasome pathway and plant development. Plant Cell 16:3181–3195

    Article  PubMed  CAS  Google Scholar 

  6. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M (2002) Structure of the Cul 1–Rbx 1–Skp 1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  PubMed  CAS  Google Scholar 

  7. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    Article  PubMed  CAS  Google Scholar 

  8. Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M (2002) Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol 43:1073–1085

    Article  PubMed  CAS  Google Scholar 

  9. Hua Z, Zou C, Shiu SH, Vierstra RD (2011) Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One 6:e16219

    Article  PubMed  CAS  Google Scholar 

  10. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: and Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  11. Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13:2659–2670

    PubMed  CAS  Google Scholar 

  12. Dieterle M, Zhou YC, Schäfer E, Funk M, Kretsch T (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev 15:939–944

    Article  PubMed  CAS  Google Scholar 

  13. Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20:433–445

    Article  PubMed  CAS  Google Scholar 

  14. Gray WM, Del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  PubMed  CAS  Google Scholar 

  15. Stirnberg P, van De Sande K, Leyser H (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  16. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, and F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    PubMed  CAS  Google Scholar 

  17. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    Article  PubMed  CAS  Google Scholar 

  18. Lee TG, Jang CS, Kim JY, Kim DS, Park JH, Kim DY, Seo YW (2007) A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses. Physiol Plant 129:375–385

    Article  CAS  Google Scholar 

  19. Hong MJ, Kim DY, Lee TG, Jeon WB, Seo YW (2010) Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat. Genes Genet Syst 85:97–106

    Article  PubMed  CAS  Google Scholar 

  20. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 352–355

    Google Scholar 

  21. Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–670

    PubMed  CAS  Google Scholar 

  22. Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53:289–298

    PubMed  CAS  Google Scholar 

  23. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  CAS  Google Scholar 

  24. Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267

    Article  PubMed  CAS  Google Scholar 

  25. Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2005) Identification and characterization of gene sequences expressed in wheat spikelets at the heading stage. Gene 346:221–230

    Article  PubMed  CAS  Google Scholar 

  26. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  27. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638

    Article  PubMed  CAS  Google Scholar 

  28. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  PubMed  CAS  Google Scholar 

  29. Andrade MA, González-Guzmán M, Serrano R, Rodríguez PL (2001) A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins. Plant Mol Biol 46:603–614

    Article  PubMed  CAS  Google Scholar 

  30. Yan YS, Chen XY, Yang K, Sun ZX, Fu YP, Zhang YM, Fang RX (2011) Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant 4:190–197

    Article  PubMed  CAS  Google Scholar 

  31. Konishi H, Yamane H, Maeshima M, Komatsu S (2004) Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol 56:839–848

    Article  PubMed  CAS  Google Scholar 

  32. Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa Y (2009) Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. J Exp Bot 60:3067–3073

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Ni W, Ge X, Zhang J, Ma H, Cao K (2006) Proteomic identification of potential target proteins regulated by an ASK1-mediated proteolysis pathway. Cell Res 16:489–498

    Article  PubMed  CAS  Google Scholar 

  34. Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 6:282–288

    Article  PubMed  CAS  Google Scholar 

  35. Fusaro AF, Sachetto-Martins G (2007) Blooming time for plant glycine-rich proteins. Plant Signal Behav 2:386–387

    Article  PubMed  Google Scholar 

  36. Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56:239–250

    Article  PubMed  CAS  Google Scholar 

  37. Galan JM, Peter M (1999) Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci USA 96:9124–9129

    Article  PubMed  CAS  Google Scholar 

  38. Kim WY, Geng R, Somers DE (2003) Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci USA 100:4933–4938

    Article  PubMed  CAS  Google Scholar 

  39. Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22:2630–2641

    Article  PubMed  CAS  Google Scholar 

  40. Kus BM, Caldon CE, Andorn-Broza R, Edwards AM (2004) Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro. Proteins Struct Funct Bioinf 54:455–467

    Article  CAS  Google Scholar 

  41. Durfee T, Roe JL, Sessions RA, Inouye C, Serikawa K, Feldmann KA, Weigel D, Zambryski PC (2003) The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Natl Acad Sci USA 100:8571–8576

    Article  PubMed  CAS  Google Scholar 

  42. Gardner JS, Hess W, Trione E (1985) Development of the young wheat spike: a SEM study of Chinese spring wheat. Am J Bot 72:548–559

    Article  Google Scholar 

  43. Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci 179:97–102

    Article  CAS  Google Scholar 

  44. Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, Crouzet J, Clément C, Baillieul F, Dorey S (2011) Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine. Mol Biol Rep 38:3327–3337

    Article  PubMed  CAS  Google Scholar 

  45. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. This work was also supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ0080312012), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Weon Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, M.J., Kim, D.Y., Kang, S.Y. et al. Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. Mol Biol Rep 39, 9681–9696 (2012). https://doi.org/10.1007/s11033-012-1833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1833-3

Keywords

Navigation