Skip to main content
Log in

Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Myostatin (MSTN) is a member of the transforming growth factor-β superfamily and functions as a negative regulator of skeletal muscle development and growth. In this study, the bighead carp MSTN gene (AnMSTN for short) was cloned and characterized. The 3,769 bp genomic sequence of AnMSTN consisted of three exons and two introns, and the full length cDNA (2,141 bp) of the gene had an open reading frame encoding a polypeptide of 375 amino acids. The deduced amino acid sequence of AnMSTN showed 67.1–98.7 % homology with MSTNs of avian, mammalian and teleostean species. Sequence comparison and phylogenetic analysis confirmed the MSTNs were conserved throughout the vertebrates and AnMSTN belonged to MSNT-1 isoform. AnMSTN was expressed in various tissues with the highest expression in muscle. Two single nucleotide polymorphisms, g.1668T > C in intron 2 and g.2770C > A in 3′ UTR, were identified in AnMSTN by sequencing PCR fragments, and genotyped by SSCP. Association analysis showed that g.2770C > A genotypes were significantly associated with total length, body length and body weight (P < 0.01). These results suggest that AnMSTN involves in the regulation of growth, and this polymorphism would be informative for further studies on selective breeding in bighead carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  2. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double muscled phenotype in cattle. Nat Genet 17:71–74

    Article  CAS  PubMed  Google Scholar 

  3. Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL (2009) Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem Biophys Res Commun 387:766–771

    Article  CAS  PubMed  Google Scholar 

  4. Sawatari E, Seki R, Adachi T, Hashimoto H, Uji S, Wakamatsu Y, Nakata T, Kinoshita M (2010) Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes). Comp Biochem Physiol A 155:183–189

    Article  Google Scholar 

  5. Rodgers BD, Weber GM, Sullivan CV, Evine MA (2001) Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142:1412–1418

    CAS  PubMed  Google Scholar 

  6. Xue LY, Qian KX, Qian HQ, Li L, Yang QY, Li MY (2006) Molecular cloning and characterization of the myostatin gene in croceine croaker, Pseudosciaena crocea. Mol Biol Rep 33:129–135

    Article  CAS  PubMed  Google Scholar 

  7. Ko CF, Chiou TT, Chen T, Wu JL, Chen JC, Lu JK (2007) Molecular cloning of myostatin gene and characterization of tissue-specific and developmental stage-specific expression of the gene in orange spotted grouper, Epinephelus coioides. Mar Biotechnol 9:20–32

    Article  CAS  PubMed  Google Scholar 

  8. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Østbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen Ø (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268:5249–5257

    Article  PubMed  Google Scholar 

  10. Biga PR, Roberts SB, Iliev DB, McCauley LA, Moon JS, Collodi P, Goetz FW (2005) The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio. Comp Biochem Physiol B 141:218–230

    Article  PubMed  Google Scholar 

  11. De Santis C, Jerry DR (2011) Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Mol Cell Endocrinol 335:158–165

    Article  PubMed  Google Scholar 

  12. Maccatrozzo L, Bargelloni L, Cardazzo B, Rizzo G, Patarnello T (2001) A novel second myostatin gene is present in teleost fish. FEBS Lett 509:36–40

    Article  CAS  PubMed  Google Scholar 

  13. Helterline DL, Garikipati D, Stenkamp DL, Rodgers BD (2007) Embryonic and tissue-specific regulation of myostatin-1 and 2 gene expression in zebrafish. Gen Comp Endocrinol 151:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland, p 980

    Google Scholar 

  15. Jiang YL, Li N, Fan XZ, Xiao LR, Xiang RL, Hu XX, Du LX, Wu CX (2002) Associations of T → A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. AJAS 15:154–1545

    CAS  Google Scholar 

  16. Sellick GS, Pitchford WS, Morris CA, Cullen NG, Crawford AM, Raadsma HW, Bottema CD (2007) Effect of myostatin F94L on carcass yield in cattle. Anim Genet 38:440–446

    Article  CAS  PubMed  Google Scholar 

  17. Hickford JG, Forrest RH, Zhou H, Fang Q, Han J, Frampton CM, Horrell AL (2010) Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim Genet 41:64–72

    Article  CAS  PubMed  Google Scholar 

  18. Wang XL, Meng XY, Song B, Qiu XM, Liu HY (2010) SNPs in the myostatin gene of the mollusk Chlamys farreri: association with growth traits. Comp Biochem Physiol B 155:327–330

    Article  PubMed  Google Scholar 

  19. Tang YK, Li JL, Yu JH, Chen XF, Li HX (2010) Genetic structure of MSTN and association between its polymorphisms and growth traits in genetically improved farmed tilapia (GIFT). J Fish Sci China 17:44–51

    CAS  Google Scholar 

  20. FAO (Food and Agriculture Organization) (2010) Fishery and aquaculture statistics 2008. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  21. Hu PP, Datto MB, Wang XG (1998) Molecular mechanisms of transforming growth factor-beta signaling. Endocr Rev 19:349–363

    CAS  PubMed  Google Scholar 

  22. Daopin S, Piez KA, Ogawa Y, Davies DR (1992) Crystal structure of transforming growth factor-beta2: an unusual fold for the superfamily. Science 257:369–373

    Article  CAS  PubMed  Google Scholar 

  23. Kerr T, Roalson EH, Rodgers BD (2005) Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 7:390–400

    Article  CAS  PubMed  Google Scholar 

  24. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  25. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

    Article  CAS  PubMed  Google Scholar 

  26. Turner BJ (1984) Evolutionary genetics of fishes. Plenum Press, New York

    Book  Google Scholar 

  27. David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425–1434

    Article  CAS  PubMed  Google Scholar 

  28. Ji S, Losinski RL, Cornellius SG, Frank GR, Willi GM, Gerrard EE, Depreux FF, Spurlock ME (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275:1265–1273

    Google Scholar 

  29. Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  30. De Santis C, Evans BS, Smith-Keune C, Jerry DR (2008) Molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer) myostatin gene. BMC Genomics 9:82–96

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kocabas AM, Kucuktas H, Dunham RA, Liu ZJ (2002) Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta 1575:99–107

    Article  CAS  PubMed  Google Scholar 

  32. Hadjipavlou G, Matika O, Clop A, Bishop SC (2008) Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim Genet 39:346–353

    Article  CAS  PubMed  Google Scholar 

  33. Yu L, Tang H, Wang J, Wu Y, Zou L, Jiang Y, Wu C, Li N (2007) Polymorphisms in the 5′ regulatory region of myostatin gene are associated with early growth traits in Yorkshire pigs. Sci China C Life Sci 50:642–647

    Article  CAS  PubMed  Google Scholar 

  34. Yu JH, Li HX, Tang YK, Li JL, Dong ZJ (2010) Isolation and expression of myostatin (MSTN) genes, and their polymorphism correlations with body form and average daily gain in Cyprinus carpio var. jian. Chin J Agric Biotechnol 18:1062–1072

    CAS  Google Scholar 

  35. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349

    Article  CAS  PubMed  Google Scholar 

  36. Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396

    Article  CAS  PubMed  Google Scholar 

  37. Stanilova S, Miteva L, Prakova G (2007) Interleukin-12B-3′ UTR polymorphism in association with IL-12p40 and IL-12p70 serum levels and silicosis severity. Int J Immunogenet 34:193–199

    Article  CAS  PubMed  Google Scholar 

  38. Pickard B, Knight HM, Hamilton RS, Soares DC, Walker R, Boyd JKF, Machell J, Maclean A, McGhee KA, Condie A, Porteous DJ, St Clair D, Davis I, Blackwood DHR, Muir WJA (2008) Common variant in the 3′ UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc Natl Acad Sci USA 105:14940–14945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu LQ, Li FE, Deng CY, Xiong YZ (2011) Molecular cloning, tissue expression and association of porcine NR4A1 gene with reproductive traits. Mol Biol Rep 38:103–114

    Article  CAS  PubMed  Google Scholar 

  40. Liu CX, Gao H, Zhai SL, Liu B (2011) Molecular characterization, chromosomal localization, expression profile and association analysis with carcass traits of the porcine dickkopf homolog1 gene. Mol Biol Rep 38:1929–1934

    Article  CAS  PubMed  Google Scholar 

  41. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  CAS  PubMed  Google Scholar 

  42. Antonarakis SE, Cooper DN (2003) Mutations in Human Genetic Diseases: nature and consequences. Nature Encyclopedia of the Human Genome. Nature Publishing Group, London, 4:227–253

  43. Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81

    Article  CAS  PubMed  Google Scholar 

  44. Fu L, Benchimol S (1997) Participation of the human p53 3′ UTR in translational repression and activation following γ-irradiation. EMBO J 16:4117–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maquat LE (2001) The power of point mutations. Nature Genet 27:5–6

    Article  CAS  PubMed  Google Scholar 

  46. Kuhnlein U, Ni L, Weigend S, Gavora JS, Fairfull W, Zadworny D (1997) DNA polymorphisms in the chicken growth hormone gene: response to selection for disease resistance and association with egg production. Anim Genet 28:116–123

    Article  CAS  PubMed  Google Scholar 

  47. Hayes B, Baranski M, Goddard ME, Robinson N (2007) Optimisation of marker assisted selection for abalone breeding programs. Aquaculture 265:61–69

    Article  Google Scholar 

  48. Casas E, Shackelford SD, Keele JW, Stone RT, Kappers SM, Koohmaraie M (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternative from of myostatin. J Anim Sci 78:560–569

    CAS  PubMed  Google Scholar 

  49. Marcq F, Elsen JM, El Barkouki S, Bouix J, Eychenne F, Grobet L, Karim L, Laville E, Nezer C, Royo L, Sayd T, Bibé B, Le Roy PL, Georges M (1998) Investigating the role of double muscling characterizing Belgian Texel sheep. Anim Genet 29(supp.1):52–53

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministry of Agriculture of China (200903045, 2011-G12). Parts of the data used were generated within the project MOST 973 (2010CB126305) and FEBL (2011FBZ20). L. L was financially supported by CAS studentship. We thank Mr. C. Zhu and W. Guo, F. Zeng for the collection of fish samples and technical assistance in laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingou Tong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Abbreviation, name and GenBank accession numbers for MSTN genes from different animals. (DOC 73 kb)

11033_2012_1794_MOESM2_ESM.tif

Fig. S1 Nucleotide sequence and deduced amino acid sequence for the AnMSTN. Exons are shown in capital letters and introns in small letters. Nucleotides are numbered from the first base at the 5′ end. (TIFF 3180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Yu, X. & Tong, J. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol Biol Rep 39, 9211–9221 (2012). https://doi.org/10.1007/s11033-012-1794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1794-6

Keywords

Navigation