Skip to main content

Advertisement

Log in

Positive selection pressure within teleost toll-like receptors tlr21 and tlr22 subfamilies and their response to temperature stress and microbial components in zebrafish

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) play a crucial role in host defence, since they trigger immune response following recognition of pathogen-associated molecular patterns (PAMPs) in potential infectious agents. TLRs have been found in numerous organisms, including mammals, birds and teleosts. Some TLR members are commonly retained across all species, whilst others were lost, gained or diverged independently during evolution. Our knowledge about the evolution and specific functions of tlr21, tlr22 and tlr23 in teleosts are still scarce. Phylogenetic analysis of 18 tlr13, tlr21, tlr22 and tlr23 genes from 9 different fish species divided them in two groups. All tlr21 genes were under the first clade, while the second comprised tlr22, tlr23 and tlr13 from Atlantic salmon. Evidence of positive selection was detected at three sites within the leucine-rich repeat regions of Tlr22, which may influence PAMP recognition. Immunostimulation experiments revealed that expression of zebrafish tlr22 is modulated by several unrelated PAMPs. Up to a 3-fold increase in tlr21 and tlr22 expression was detected in larvae exposed to immunostimulants such as lipopolysaccharide, peptidoglycan or poly I:C. We found that zebrafish tlrs are expressed mainly in immune-related organs, such as spleen and kidney as well as in testis and temperature stress did not have an effect on the expression of tlr21 and tlr22 in the early stages of development in zebrafish larvae. Our data indicates that these teleost tlrs may play a role in innate host defence. In particular, tlr22 is evolving under positive selection, which indicates functional diversification and adaptation of the response to different PAMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Tlr:

Toll-like receptor

PAMPs:

Pathogen-associated molecular patterns

LRR:

Leucine-rich repeat

LPS:

Lipopolysaccharide from Salmonella enterica typhimurium

IC:

Polyinosinic-polycytidylic acid potassium salt

PG:

Peptidoglycan from Staphylococcus aureus

References

  1. Smith VJ, Fernandes JMO (2009) Antimicrobial peptides of the innate immune system. In: Zaccone G, Perriere C, Mathis A, Kapoor BG (eds) Fish defences: pathogens, parasites and predators. Science Publishers, USA, pp 241–276. doi:10.1201/b10188-9

    Google Scholar 

  2. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi:10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway CA Jr (1998) Innate immune recognition and control of adaptive immune responses. Semin Immunol 10(5):351–353. doi:10.1006/smim.1998.0136

    Article  CAS  PubMed  Google Scholar 

  4. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625. doi:10.1016/j.bbrc.2009.08.062

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826. doi:10.1038/nature06246

    Article  CAS  PubMed  Google Scholar 

  6. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. doi:10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  7. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29(2):182–191. doi:10.1016/j.immuni.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384. doi:10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52(2):269–279. doi:10.1016/0092-8674(88)90516-8

    Article  CAS  PubMed  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983. doi:10.1016/S0092-8674(00)80172-5

    Article  CAS  PubMed  Google Scholar 

  11. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102(27):9577–9582. doi:10.1073/pnas.0502272102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brownlie R, Allan B (2011) Avian toll-like receptors. Cell Tissue Res 343(1):121–130. doi:10.1007/s00441-010-1026-0

    Article  CAS  PubMed  Google Scholar 

  13. Rebl A, Goldammer T, Seyfert HM (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134(3–4):139–150. doi:10.1016/j.vetimm.2009.09.021

    Article  CAS  PubMed  Google Scholar 

  14. Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27(9):2172–2186. doi:10.1093/molbev/msq104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian Toll-Like receptor pathway-subtle differences amidst general conformity. Dev Comp Immunol 33(9):967–973. doi:10.1016/j.dci.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  16. Chen JS, Wang TY, Tzeng TD, Wang CY, Wang D (2008) Evidence for positive selection in the TLR9 gene of teleosts. Fish Shellfish Immunol 24(2):234–242. doi:10.1016/j.fsi.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Novoa B, Figueras A (2012) Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 946:253–275. doi:10.1007/978-1-4614-0106-3_15

    Article  CAS  PubMed  Google Scholar 

  18. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137. doi:10.1007/978-1-59745-251-9_6

    Article  CAS  PubMed  Google Scholar 

  19. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. doi:10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes JM, Ruangsri J, Kiron V (2010) Atlantic cod piscidin and its diversification through positive selection. PLoS One 5(3):e9501. doi:10.1371/journal.pone.0009501

    Article  PubMed  PubMed Central  Google Scholar 

  22. Consuegra S, Megens HJ, Leon K, Stet RJM, Jordan WC (2005) Patterns of variability at the major histocompatibility class II alpha locus in Atlantic salmon contrast with those at the class I locus. Immunogenetics 57(1):16–24. doi:10.1007/s00251-004-0765-z

    Article  CAS  PubMed  Google Scholar 

  23. Sarropoulou E, Fernandes JMO, Mitter K, Magoulas A, Mulero V, Sepulcre MP, Figueras A, Novoa B, Kotoulas G (2010) Evolution of a multifunctional gene: the warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Mol Phylogenet Evol 55(2):640–649. doi:10.1016/j.ympev.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457. doi:10.1093/bioinformatics/btq429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campos C, Valente LMP, Fernandes JMO (2012) Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene 500(1):93–100. doi:10.1016/j.gene.2012.03.041

    Article  CAS  PubMed  Google Scholar 

  26. Novoa B, Bowman TV, Zon L, Figueras A (2009) LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol 26(2):326–331. doi:10.1016/j.fsi.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  27. Johansen A, Collet B, Sandaker E, Secombes CJ, Jørgensen JB (2004) Quantification of Atlantic salmon type-I interferon using an Mx1 promoter reporter gene assay. Fish Shellfish Immunol 16(2):173–184. doi:10.1016/s1050-4648(03)00060-3

    Article  CAS  PubMed  Google Scholar 

  28. Campos C, Valente LMP, Borges P, Bizuayehu T, Fernandes JMO (2010) Dietary lipid levels have a remarkable impact on the expression of growth-related genes in Senegalese sole (Solea senegalensis Kaup). J Exp Biol 213(2):200–209. doi:10.1242/jeb.033126

    Article  CAS  PubMed  Google Scholar 

  29. Wheelan SJ, Church DM, Ostell JM (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res 11(11):1952–1957. doi:10.1101/gr.195301

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandes JM, Mommens M, Hagen O, Babiak I, Solberg C (2008) Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol B Biochem Mol Biol 150(1):23–32. doi:10.1016/j.cbpb.2008.01.003

    Article  PubMed  Google Scholar 

  31. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36. doi:10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11(6):725–732. doi:10.1016/s0959-440x(01)00266-4

    Article  CAS  PubMed  Google Scholar 

  33. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124–143. doi:10.1186/1471-2164-8-124

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in toll-like receptors. Trends Immunol 24(10):528–533. doi:10.1016/s1471-4906(03)00242-4

    Article  CAS  PubMed  Google Scholar 

  35. Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, Davies DR (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci USA 102(31):10976–10980. doi:10.1073/pnas.0505077102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35(12):1263–1272. doi:10.1016/j.dci.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  37. Leong J, Jantzen S, von Schalburg K, Cooper G, Messmer A, Liao N, Munro S, Moore R, Holt R, Jones S, Davidson W, Koop B (2010) Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11(1):279–295. doi:10.1186/1471-2164-11-279

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118. doi:10.1093/molbev/msi097

    Article  CAS  PubMed  Google Scholar 

  39. Park S, Park D, Jung Y-J, Chung E, Choi S (2010) Positive selection signatures in the TLR7 family. Genes Genomics 32(2):143–150. doi:10.1007/s13258-009-0837-4

    Article  CAS  Google Scholar 

  40. Areal H, Abrantes J, Esteves P (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Bio 11(1):368. doi:10.1186/1471-2148-11-368

    Article  CAS  Google Scholar 

  41. Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ (2009) Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 30(3):124–130. doi:10.1016/j.it.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  42. John T (2011) The MHC, disease and selection. Immunol Lett 137(1–2):1–8. doi:10.1016/j.imlet.2011.01.002

    Google Scholar 

  43. Rebl A, Siegl E, Köllner B, Fischer U, Seyfert H-M (2007) Characterization of twin toll-like receptors from rainbow trout (Oncorhynchus mykiss): evolutionary relationship and induced expression by Aeromonas salmonicida salmonicida. Dev Comp Immunol 31(5):499–510. doi:10.1016/j.dci.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  44. Stafford JL, Ellestad KK, Magor KE, Belosevic M, Magor BG (2003) A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Dev Comp Immunol 27(8):685–698. doi:10.1016/s0145-305x(03)00041-7

    Article  CAS  PubMed  Google Scholar 

  45. Xiao X, Qin Q, Chen X (2011) Molecular characterization of a toll-like receptor 22 homologue in large yellow croaker (Pseudosciaena crocea) and promoter activity analysis of its 5′-flanking sequence. Fish Shellfish Immunol 30(1):224–233. doi:10.1016/j.fsi.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  46. Oshiumi H, Tsujita T, Shida K, Matsumoto M, Ikeo K, Seya T (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54(11):791–800. doi:10.1007/s00251-002-0519-8

    CAS  PubMed  Google Scholar 

  47. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28(5):886–892. doi:10.1248/bpb.28.886

    Article  CAS  PubMed  Google Scholar 

  48. Baoprasertkul P, Xu P, Peatman E, Kucuktas H, Liu Z (2007) Divergent toll-like receptors in catfish (Ictalurus punctatus): TLR5S, TLR20, TLR21. Fish Shellfish Immunol 23(6):1218–1230. doi:10.1016/j.fsi.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  49. Watzke J, Schirmer K, Scholz S (2007) Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish Shellfish Immunol 23(4):901–905. doi:10.1016/j.fsi.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  50. Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46(15):3163–3170. doi:10.1016/j.molimm.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  51. Hirono I, Takami M, Miyata M, Miyazaki T, Han H-J, Takano T, Endo M, Aoki T (2004) Characterization of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichthys olivaceus. Immunogenetics 56(1):38–46. doi:10.1007/s00251-004-0657-2

    Article  CAS  PubMed  Google Scholar 

  52. Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu M, Matsumoto M, Seya T (2008) Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J Immunol 181(5):3474–3485

    Article  CAS  PubMed  Google Scholar 

  53. Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, Spaink HP (2004) Expression analysis of the toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40(11):773–783. doi:10.1016/j.molimm.2003.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Sundaram’s PhD is funded by a scholarship from the University of Nordland (Norway). We are grateful to Dr. Alessia Giannetto, Dr. Kazue Nagasawa, Ms. Catarina Campos and Mr. Spyros Kollias for their help in laboratory work and fish husbandry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. O. Fernandes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, A.Y.M., Consuegra, S., Kiron, V. et al. Positive selection pressure within teleost toll-like receptors tlr21 and tlr22 subfamilies and their response to temperature stress and microbial components in zebrafish. Mol Biol Rep 39, 8965–8975 (2012). https://doi.org/10.1007/s11033-012-1765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1765-y

Keywords

Navigation