Skip to main content
Log in

Expression analysis of turkey (Meleagris gallopavo) toll-like receptors and molecular characterization of avian specific TLR15

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) constitute a multi-gene family, which plays a pivotal role in sensing invading pathogens by virtue of conserved microbial patterns. TLR repertoire of chicken and zebra finch has been well studied. However TLR family of other avian species is yet to be characterized. In the present study, we identified TLR repertoire of turkey, characterized avian specific receptor TLR15 in turkey and profiled the TLRs expressions in a range of tissues of turkey poults. All ten TLR genes orthologous to chicken TLR repertoire were found in turkey. Turkey TLR genes showed 81–93 % similarity at amino acid level to their chicken counter parts. Phylogenetic analysis confirmed the orthologous relationship of turkey TLRs with chicken and zebra finch TLRs. Open reading frame of turkey TLR15 was 2,607 bp long encoding 868 amino acids similar to that of broiler chicken and showed 92.4, 91.1 and 69.5 % identity at amino acid levels with chicken, Japanese quail and zebra finch TLR15 sequences respectively. Overall TLR expression was highest for TLR4 and lowest for TLR21. TLR1A, 2A, 2B and 21 were significantly higher in liver than other tissues investigated (P < 0.01). TLR3 expression was significantly higher in bone marrow (BM) and spleen in comparison to other tissues studied (P < 0.01). Furthermore, no significant differences in the expression levels of TLR1B, 4, 5, 7 and 15 genes were detected among the tissues studied. Our findings contribute to the characterization of innate immune system of birds and show the innate preparedness of young turkey poults to a range of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TLR:

Toll-like receptor

PAMP:

Pathogen associated molecular patterns

References

  1. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  PubMed  CAS  Google Scholar 

  2. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  3. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  4. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437

    Article  PubMed  CAS  Google Scholar 

  5. Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T (2003) TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 278(50):49751–49762

    Article  PubMed  CAS  Google Scholar 

  6. Ishii A, Kawasaki M, Matsumoto M, Tochinai S, Seya T (2007) Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors. Immunogenetics 59(4):281–293

    Article  PubMed  CAS  Google Scholar 

  7. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56(10):743–753

    Article  PubMed  CAS  Google Scholar 

  8. Boyd A, Philbin VJ, Smith AL (2007) Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochem Soc Trans 35(Pt 6):1504–1507

    Article  PubMed  CAS  Google Scholar 

  9. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62

    Article  PubMed  Google Scholar 

  10. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  PubMed  CAS  Google Scholar 

  11. Smith J, Speed D, Law AS, Glass EJ, Burt DW (2004) In silico identification of chicken immune-related genes. Immunogenetics 56(2):122–133

    Article  PubMed  CAS  Google Scholar 

  12. Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’farrelly C (2006) Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun 74(3):1692–1698

    Article  PubMed  CAS  Google Scholar 

  13. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian Toll-Like receptor pathway-subtle differences amidst general conformity. Dev Comp Immunol 33(9):967–973

    Article  PubMed  CAS  Google Scholar 

  14. Dalloul RA, Long JA, Zimin AV, et al (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. doi:10.1371/journal.pbio.1000475

  15. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168(2):554–561

    PubMed  CAS  Google Scholar 

  16. Kogut MH, Iqbal M, He H, Philbin V, Kaiser P, Smith A (2005) Expression and function of Toll-like receptors in chicken heterophils. Dev Comp Immunol 29(9):791–807

    Article  PubMed  CAS  Google Scholar 

  17. Nalubamba KS, Gossner AG, Dalziel RG, Hopkins J (2008) Differential expression of pattern recognition receptors during the development of foetal sheep. Dev Comp Immunol 32(7):869–874

    Article  PubMed  CAS  Google Scholar 

  18. Vahanan BM, Raj GD, Pawar RMC, Gopinath VP, Raja A, Thangavelu A (2008) Expression profile of toll like receptors in a range of water buffalo tissues (Bubalus bubalis). Vet Immunol Immunopathol 126(1–2):149–155

    Article  PubMed  CAS  Google Scholar 

  19. Tirumurugaan KG, Dhanasekaran S, Raj GD, Raja A, Kumanan K, Ramaswamy V (2010) Differential expression of toll-like receptor mRNA in selected tissues of goat (Capra hircus). Vet Immunol Immunopathol 133(2–4):296–301

    Article  PubMed  CAS  Google Scholar 

  20. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  21. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  22. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Nat Acad Sci USA 95(11):5857–5864

    Article  PubMed  CAS  Google Scholar 

  23. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32(Database issue):D142–D144

    Article  PubMed  CAS  Google Scholar 

  24. Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T (2001) Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem 276(50):47143–47149

    Article  PubMed  CAS  Google Scholar 

  25. Boyd Y, Goodchild M, Morroll S, Bumstead N (2001) Mapping of the chicken and mouse genes for toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics 52(3–4):294–298

    Article  PubMed  CAS  Google Scholar 

  26. Iqbal M, Philbin VJ, Smith AL (2005) Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunopathol 104(1–2):117–127

    Article  PubMed  CAS  Google Scholar 

  27. Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL (2005) Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114(4):507–521

    Article  PubMed  CAS  Google Scholar 

  28. Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM (2007) The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. J Immunol 178(11):7110–7119

    PubMed  CAS  Google Scholar 

  29. Ruan W, Wu Y, Zheng SJ (2012) Different genetic patterns in avian Toll-like receptor (TLR)5 genes. Mol Biol Rep 39(4):3419–3426

    Article  PubMed  CAS  Google Scholar 

  30. Beutler B, Rehli M (2002) Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270:1–21

    Article  PubMed  CAS  Google Scholar 

  31. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Nat Acad Sci USA 102(27):9577–9582

    Article  PubMed  CAS  Google Scholar 

  32. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13(7):933–940

    Article  PubMed  CAS  Google Scholar 

  33. Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Suzuki Y, Oshiumi H, Matsumoto M, Seya T (2008) Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol 32(2):147–155

    Article  PubMed  CAS  Google Scholar 

  34. MacDonald MRW, Xia J, Smith AL, Magor KE (2008) The duck toll like receptor 7: genomic organization, expression and function. Mol Immunol 45(7):2055–2061

    Article  PubMed  CAS  Google Scholar 

  35. Crozat K, Beutler B (2004) TLR7: a new sensor of viral infection. Proc Nat Acad Sci USA 101(18):6835–6836

    Article  PubMed  CAS  Google Scholar 

  36. Gomis S, Babiuk L, Godson DL, Allan B, Thrush T, Townsend H, Willson P, Waters E, Hecker R, Potter A (2003) Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect Immun 71(2):857–863

    Article  PubMed  CAS  Google Scholar 

  37. Gomis S, Babiuk L, Allan B, Willson P, Waters E, Ambrose N, Hecker R, Potter A (2004) Protection of neonatal chicks against a lethal challenge of Escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Dis 48(4):813–822

    Article  PubMed  Google Scholar 

  38. He H, Genovese KJ, Nisbet DJ, Kogut MH (2007) Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol Immunol 44(12):3234–3242

    Article  PubMed  CAS  Google Scholar 

  39. Taghavi A, Allan B, Mutwiri G, Van Kessel A, Willson P, Babiuk L, Potter A, Gomis S (2008) Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Dis 52(3):398–406

    Article  PubMed  Google Scholar 

  40. Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46(15):3163–3170

    Article  PubMed  CAS  Google Scholar 

  41. Keestra AM, de Zoete MR, Bouwman LI, van Putten JPM (2010) Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol 185(1):460–467

    Article  PubMed  CAS  Google Scholar 

  42. Latz E, Verma A, Visintin A et al (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8(7):772–779

    Article  PubMed  CAS  Google Scholar 

  43. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi G-P, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456(7222):658–662

    Article  PubMed  CAS  Google Scholar 

  44. Peter ME, Kubarenko AV, Weber ANR, Dalpke AH (2009) Identification of an N-terminal recognition site in TLR9 that contributes to CpG-DNA-mediated receptor activation. J Immunol 182(12):7690–7697

    Article  PubMed  CAS  Google Scholar 

  45. MacKinnon KM, He H, Nerren JR, Swaggerty CL, Genovese KJ, Kogut MH (2009) Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteritidis-infected broiler chickens. Vet Microbiol 137(3–4):313–319

    Article  PubMed  CAS  Google Scholar 

  46. Nerren JR, Swaggerty CL, MacKinnon KM, Genovese KJ, He H, Pevzner I, Kogut MH (2009) Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics 61(1):71–77

    Article  PubMed  CAS  Google Scholar 

  47. Nerren JR, He H, Genovese K, Kogut MH (2010) Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol 136(1–2):151–156

    Article  PubMed  CAS  Google Scholar 

  48. Michailidis G, Theodoridis A, Avdi M (2011) Effects of sexual maturation and Salmonella infection on the expression of Toll-like receptors in the chicken vagina. Anim Reprod Sci 123(3–4):234–241

    Article  PubMed  CAS  Google Scholar 

  49. Michailidis G, Theodoridis A, Avdi M (2010) Transcriptional profiling of Toll-like receptors in chicken embryos and in the ovary during sexual maturation and in response to Salmonella enteritidis infection. Anim Reprod Sci 122(3–4):294–302

    Article  PubMed  CAS  Google Scholar 

  50. Anastasiadou M, Theodoridis A, Avdi M, Michailidis G (2011) Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection. Anim Reprod Sci 128(1–4):93–99

    Article  PubMed  CAS  Google Scholar 

  51. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145

    Article  PubMed  CAS  Google Scholar 

  52. Vinkler M, Bryjová A, Albrecht T, Bryja J (2009) Identification of the first Toll-like receptor gene in passerine birds: TLR4 orthologue in zebra finch (Taeniopygia guttata). Tissue Antigens 74(1):32–41

    Article  PubMed  CAS  Google Scholar 

  53. Gopinath VP, Biswas M, Raj GD, Raja A, Kumanan AK, Elankumaran S (2011) Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys. Avian Dis 55(3):480–485

    Article  PubMed  CAS  Google Scholar 

  54. Kannaki TR, Verma PC (2008) Temporal and Spatial expression pattern of Toll-like receptors during embryonic development in chicken. In: Proceedings of XXIII World’s Poultry Congress, Brisbane, Australia 30 June–4 July

  55. Meade KG, Higgs R, Lloyd AT, Giles S, O’Farrelly C (2009) Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev Comp Immunol 33(4):516–524

    Article  PubMed  CAS  Google Scholar 

  56. He H, Genovese KJ, Swaggerty CL, Nisbet DJ, Kogut MH (2008) Differential induction of nitric oxide, degranulation, and oxidative burst activities in response to microbial agonist stimulations in monocytes and heterophils from young commercial turkeys. Vet Immunol Immunopathol 123(3–4):177–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannaki T. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, K.T., Reddy, M.R., Verma, P.C. et al. Expression analysis of turkey (Meleagris gallopavo) toll-like receptors and molecular characterization of avian specific TLR15. Mol Biol Rep 39, 8539–8549 (2012). https://doi.org/10.1007/s11033-012-1709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1709-6

Keywords

Navigation