Skip to main content
Log in

Different genetic patterns in avian Toll-like receptor (TLR)5 genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) mediate immune response via recognition of pathogen-associated molecular patterns (PAMPs), thus play important roles in host defense. Polymorphisms of TLR5 may affect their recognition of bacterial flagellin, leading to varied host resistance to pathogenic infections. Here, we cloned TLR5 genes from Common Pheasant, Guinea fowl and 9 Chicken breeds and analyzed their sequences. The open reading frames of TLR5 were sequenced. Amino acid analysis indicated that TLR5 from Chicken breeds shared 99.4–99.9% homology. The amino acid homology of TLR5 ranged from 92.1 to 92.5% between Chickens and Guinea fowl, 95.7–96.1% between Chickens and Turkey, 94.3–94.7% between Chickens and Common Pheasant, and 79.9–80.1% between Chickens and Zebra-finch. Different genetic patterns were determined among Chickens, Common Pheasant, Guinea fowl, Turkey and Zebra-finch. It was found that there were 92 amino acid polymorphic sites, among which 5 sites in chicken TLR5, 63 sites in Guinea fowl TLR5 and 44 sites in Common Pheasant TLR5. Our data indicate that the positive Darwinian selection occurred in avian TLR5 genes since frequency of non-synonymous (d N ) > frequency of synonymous (d S ). These results also demonstrate that avian TLR5 genes are polymorphic among avian breeds, suggesting a varied resistance among breeds of avian. This information might be of help to improve the health of avian by breeding and vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LRR:

Leucine-rich repeat

LRRCT:

C terminal LRR

SNP:

Single nucleotide polymorphism

TIR:

Toll/interleukin-1 receptor

TLR:

Toll-like receptor

References

  1. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29(2):182–191

    Article  PubMed  CAS  Google Scholar 

  2. Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ (2009) Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 30(3):124–130

    Article  PubMed  CAS  Google Scholar 

  3. Beutler B, Rehli M (2002) Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270:1–21

    Article  PubMed  CAS  Google Scholar 

  4. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102(27):9577–9582

    Article  PubMed  CAS  Google Scholar 

  5. Brownlie R, Allan B (2011) Avian toll-like receptors. Cell Tissue Res 343(1):121–130

    Article  PubMed  CAS  Google Scholar 

  6. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62

    Article  PubMed  Google Scholar 

  7. Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the toll-like receptor 5 in primates. Mol Biol Evol 26(4):937–949

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103

    Article  PubMed  CAS  Google Scholar 

  9. Andersen-Nissen E, Hawn TR, Smith KD, Nachman A, Lampano AE, Uematsu S, Akira S, Aderem A (2007) Cutting edge: Tlr5−/− mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178(8):4717–4720

    PubMed  CAS  Google Scholar 

  10. Vijay-Kumar M, Aitken JD, Gewirtz AT (2008) Toll like receptor-5: protecting the gut from enteric microbes. Semin Immunopathol 30(1):11–21

    Article  PubMed  CAS  Google Scholar 

  11. Zhang C, Wu X, Zhao Y, Deng Z, Qian G (2011) SIGIRR inhibits toll-like receptor 4, 5, 9-mediated immune responses in human airway epithelial cells. Mol Biol Rep 38(1):601–609

    Article  PubMed  CAS  Google Scholar 

  12. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56(10):743–753

    Article  PubMed  CAS  Google Scholar 

  13. Keestra AM, de Zoete MR, van Aubel RA, van Putten JP (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45(5):1298–1307

    Article  PubMed  CAS  Google Scholar 

  14. Iqbal M, Philbin VJ, Withanage GS, Wigley P, Beal RK, Goodchild MJ, Barrow P, McConnell I, Maskell DJ, Young J, Bumstead N, Boyd Y, Smith AL (2005) Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. Infect Immun 73(4):2344–2350

    Article  PubMed  CAS  Google Scholar 

  15. Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 114(5):347–360

    Article  Google Scholar 

  16. Chen Z, Ma G, Qian Q, Yao Y, Feng Y, Tang C (2009) Toll-like receptor 8 polymorphism and coronary artery disease. Mol Biol Rep 36(7):1897–1901

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Jiao Y, Wen X, Wang L, Ma C, Gao X, Chen ZJ, Zhao Y (2010) Possible association of VISA gene polymorphisms with susceptibility to systemic lupus erythematosus in Chinese population. Mol Biol Rep. doi:10.1007/s11033-010-0590-4

  18. Pandey S, Mittal B, Srivastava M, Singh S, Srivastava K, Lal P, Mittal RD (2010) Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol Biol Rep. doi:10.1007/s11033-010-0607-z

  19. Xu CJ, Zhang WH, Pan HF, Li XP, Xu JH, Ye DQ (2009) Association study of a single nucleotide polymorphism in the exon 2 region of toll-like receptor 9 (TLR9) gene with susceptibility to systemic lupus erythematosus among Chinese. Mol Biol Rep 36(8):2245–2248

    Article  PubMed  CAS  Google Scholar 

  20. Zhang YB, He FL, Fang M, Hua TF, Hu BD, Zhang ZH, Cao Q, Liu RY (2009) Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep 36(6):1475–1481

    Article  PubMed  CAS  Google Scholar 

  21. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198(10):1563–1572

    Article  PubMed  CAS  Google Scholar 

  22. Hawn TR, Wu H, Grossman JM, Hahn BH, Tsao BP, Aderem A (2005) A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci USA 102(30):10593–10597

    Article  PubMed  CAS  Google Scholar 

  23. Kao YL, Ffrench RA, Williams G (2004) Polymorphism report: identification of two common single nucleotide polymorphisms in the human toll-like receptor 5 (TLR5) gene. Mol Cell Probes 18(3):205

    Article  PubMed  CAS  Google Scholar 

  24. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian Toll-like receptor pathway–subtle differences amidst general conformity. Dev Comp Immunol 33(9):967–973

    Article  PubMed  CAS  Google Scholar 

  25. Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80(2):220–226

    Article  PubMed  CAS  Google Scholar 

  26. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PloS one 4(6):e5990

    Article  PubMed  Google Scholar 

  27. Dhiman N, Ovsyannikova IG, Vierkant RA, Ryan JE, Pankratz VS, Jacobson RM, Poland GA (2008) Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine 26(14):1731–1736

    Article  PubMed  CAS  Google Scholar 

  28. Downing T, Lloyd AT, O’Farrelly C, Bradley DG (2010) The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol 184(12):6993–7000

    Article  PubMed  CAS  Google Scholar 

  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  30. Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28(5):1703–1715

    Article  PubMed  CAS  Google Scholar 

  31. Bergman IM, Rosengren JK, Edman K, Edfors I (2010) European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1, TLR2, and TLR6 genes. Immunogenetics 62(1):49–58

    Article  PubMed  CAS  Google Scholar 

  32. Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38(1):12–19

    Article  PubMed  CAS  Google Scholar 

  33. Wigley P (2004) Genetic resistance to Salmonella infection in domestic animals. Res Vet Sci 76(3):165–169

    Article  PubMed  CAS  Google Scholar 

  34. de Zoete MR, Keestra AM, Wagenaar JA, van Putten JP (2010) Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. J Biol Chem 285(16):12149–12158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Earmarked Fund for Modern Agro-industry Technology Research System (# NYCYTX-41 to SJ Zheng), National Natural Science Foundation of China (#30725026 and 31072117 to SJ Zheng) and National Basic Research Program (Project 973) of China (#2006CB504303) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, W., Wu, Y. & Zheng, S.J. Different genetic patterns in avian Toll-like receptor (TLR)5 genes. Mol Biol Rep 39, 3419–3426 (2012). https://doi.org/10.1007/s11033-011-1113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1113-7

Keywords

Navigation