Skip to main content
Log in

Expression characteristics of two ubiquitin/ribosomal fusion protein genes in the developing testis, accessory gonad and ovary of Chinese mitten crab, Eriocheir sinensis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The ubiquitin/proteasome pathway plays an important role in gametogenesis. Ubiquitin/ribosomal fusion protein is the precursor of mono-ubiquitin. We identified two ubiquitin/ribosomal fusion proteins genes in testis of Eriocheir sinensis. The ubiquitin-ribosomal proteins S27 and L40 are denoted as UBS27 and UBL40, respectively. The full length Es-UBS27 cDNA (565 bp) was cloned using PCR, based upon an initial expressed sequence tag (EST) isolated from a testicular cDNA library and the result of 3′ RACE. The sequence contained a 465-nucleotide open reading frame (ORF) that encoded a protein of 154 amino acids. It contained a Ubiquitin (UB) domain and the ribosomal protein S27. The full-length Es-UBL40 cDNA (521 bp) contained a 390-nucleotide ORF that encoded a protein of 129 amino acids. It contained a UB domain and the ribosomal protein L40. By real-time PCR, the expression level of these two UB genes is shown to change significantly in the developing testis and ovary, reaching peak expression in August and October, respectively. During accessory gonad seasonal development, the expression of UBS27 and UBL40 varied sharply and reached peak expression in November. In situ hybridization of testis and ovary, indicated that UB transcription took place widely. Our study demonstrates, for the first time, that UBS27 and UBL40 play key roles in gametogenesis and reproductive success in Eriocheir sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  3. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335

    Article  PubMed  CAS  Google Scholar 

  4. Spees JL, Chang SA, Mykles DL, Snyder MJ, Chang ES (2003) Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones 8:258–264

    Article  PubMed  CAS  Google Scholar 

  5. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544

    Article  PubMed  CAS  Google Scholar 

  6. Jentsch S, Seufert W, Hauser HP (1991) Genetic analysis of the ubiquitin system. Biochim Biophys Acta 1089:127–139

    PubMed  CAS  Google Scholar 

  7. Catic A, Ploegh HL (2005) Ubiquitin—conserved protein or selfish gene? Trends Biochem Sci 30:600–604

    Article  PubMed  CAS  Google Scholar 

  8. Mezquita J, Pau M, Mezquita C (1997) Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene 195:313–319

    Article  PubMed  CAS  Google Scholar 

  9. Nenoi M, Ichimura S, Mita K (2000) Interspecific comparison in the frequency of concerted evolution at the polyubiquitin gene locus. J Mol Evol 51:161–165

    PubMed  CAS  Google Scholar 

  10. Sharp PM, Li WH (1987) Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol 25:58–64

    Article  PubMed  CAS  Google Scholar 

  11. Baker RT, Board PG (1991) The human ubiquitin-52amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res 19:1035–1040

    Article  PubMed  CAS  Google Scholar 

  12. Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  CAS  Google Scholar 

  13. Daniel F, Bonnie B, Alexander V (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401

    Article  Google Scholar 

  14. John M, Evelyn M, Patrick J (2003) Novel ubiquitin fusion proteins: ribosomal protein P1 and actin. J Mol Biol 328:771–778

    Article  Google Scholar 

  15. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    Article  PubMed  CAS  Google Scholar 

  16. Tan Y, Bishoff ST, Riley MA (1993) Ubiquitins revisited: further examples of within- and between-locus concerted evolution. Mol Phylogenet Evol 2:351–360

    Article  PubMed  CAS  Google Scholar 

  17. Jones D, Candido EP (1993) Novel ubiquitin-like ribosomal protein fusion genes from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Biol Chem 268:19545–19551

    PubMed  CAS  Google Scholar 

  18. Müller WE, SchrÖder HC, Müller IM, Gamulin V (1994) Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium. J Mol Evol 39:369–377

    Article  PubMed  Google Scholar 

  19. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  20. Haas AL, Warms JVB, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme: mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548

    PubMed  CAS  Google Scholar 

  21. Pickart CM (2000) Ubiquitinin in chains. Trends Biochem Sci 25:544–548

    Article  PubMed  CAS  Google Scholar 

  22. Koken MH, Hoogerhrugge JW, Jasper I, de Wit J, Willemsen R, Roest HP, Grootegoed JA, Hoeijmakers JH (1996) Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification. Dev Biol 173:119–132

    Article  PubMed  CAS  Google Scholar 

  23. Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MHM, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JTM, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JHJ (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes a defect in spermatogenesis associated with chromatin modification. Cell 86:799–810

    Article  PubMed  CAS  Google Scholar 

  24. Takagi Sawada M, Kyozuka K, Morinaga C, Izumi K, Sawada H (1997) The proteasome is an essential mediator of the activation of pre-MPF during starfish oocyte maturation. Biochem Bioph Res Commun 236:40–43

    Article  CAS  Google Scholar 

  25. Baarends WM, Roest HP, Grootegoed JA (1999) The ubiquitin system in gametogenesis. Mol Cell Endocrinol 151:5–16

    Article  PubMed  CAS  Google Scholar 

  26. Hershko A, Tomkins GM (1971) Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. J Biol Chem 246:710–714

    PubMed  CAS  Google Scholar 

  27. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  PubMed  CAS  Google Scholar 

  28. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A (2001) The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat Cell Biol 3:321–324

    Article  PubMed  CAS  Google Scholar 

  29. Sutovsky P, Moreno RD, Ramalho Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    Article  PubMed  CAS  Google Scholar 

  30. Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260

    Article  PubMed  CAS  Google Scholar 

  31. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci 114:1665–1675

    PubMed  CAS  Google Scholar 

  32. Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61:88–102

    Article  PubMed  CAS  Google Scholar 

  33. Hou XL, Mao Q, Zhang W, Jia LZ, Wang Q (2010) Differentially expressed genes during accessory sex gland seasonal development in Eriocheir Sinensis. J Crustac Biol 30:93–100

    Article  Google Scholar 

  34. Zhang W, Wan HL, Jiang H, Zhao YL, Zhang XW, Hu SN, Wang Q (2011) A transcriptome analysis of mitten crab testes (Eriocheir sinensis). Genet Mol Biol 34:136–141

    Article  PubMed  CAS  Google Scholar 

  35. Xue LZ, Du NS, Lai W (1987) Histology of female reproductive system in Chinese mitten-handed crab, Ericheir sinensis (Crustacean, Dacapoda). J East China Norm Univ Nat Sci Ed 3:88–97

    Google Scholar 

  36. Du NS, Xue LZ, Lai W (1988) Histology of male reproductive system in Chinese mitten-handed crab, Ericheir sinensis. Acta Zool Sinica 34:329–332

    Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  38. Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  39. Trifonov S, Houtani T, Hamada S, Kase M, Maruyama M, Sugimoto T (2009) In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord. Neuroscience 159:344–357

    Article  PubMed  CAS  Google Scholar 

  40. Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Phys A 157:123–131

    Article  Google Scholar 

  41. Snedecor G, Cochran W (1971) Statistical methods. The Iowas State University Press, Ames

    Google Scholar 

  42. Kreegipuu A, Blom N, Brunak S (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27:237–239

    Article  PubMed  CAS  Google Scholar 

  43. Timmers ACJ, Stuger R, Schaap PJ, van’t Riet J, Raué HA (1999) Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett 452:335–340

    Article  PubMed  CAS  Google Scholar 

  44. Ohtani-Kaneko R, Asahara M, Takada K, Kanda T, Iigo M, Hara M, Yokosawa H, Ohkawa K, Hirata K (1996) Nerve growth factor (NGF) induces increase in multi-ubiquitin chains and concomitant decrease in free ubiquitin in nuclei of PC12 h. Neurosci Res 26:349–355

    Article  PubMed  CAS  Google Scholar 

  45. Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12:1945–1958

    Article  PubMed  CAS  Google Scholar 

  46. Takada K, Hibi N, Tsukada Y, Shibasaki T, Ohkawa K (1996) Ability of ubiquitin radioimmunoassay to discriminate between monoubiquitin and multi-ubiquitin chains. Biochim Biophys Acta 1290:282–288

    Article  PubMed  Google Scholar 

  47. Kwon-Yul R, René M, Catherine AG, Micheal AL, Donna MB, Britta M, Hidde LP, Ron RK (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J 26:2693–2706

    Article  Google Scholar 

  48. Grondahl C, Lessl M, Faerge I, Hegele-Hartung C, Wassermann K, Ottesen JL (2000) Meiosis-activating sterol-mediated resumption of meiosis in mouse oocytes in vitro is influenced by protein synthesis inhibition and cholera toxin. Biol Reprod 62:775–780

    Article  PubMed  CAS  Google Scholar 

  49. Artus J, Babinet C, Cohen-Tannoudji M (2006) The cell cycle of early mammalian embryos lessons from genetic mouse models. Cell Cycle 5:499–502

    Article  PubMed  CAS  Google Scholar 

  50. Evans T, Rosenthal ET, Youngblomn J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  PubMed  CAS  Google Scholar 

  51. DeSalle LM, Pagano M (2001) Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett 490:179–189

    Article  PubMed  CAS  Google Scholar 

  52. Mika T, Yoshitaka N, Toshinobu T (2000) Molecular cloning of cDNA encoding a ubiquitin-activating enzyme (E1) of goldfish (Carassius auratus) and expression analysis of the cloned gene. Biochim Biophys Acta 1492:259–263

    Google Scholar 

  53. Shen BL, Zhang ZP, Wang YL, Wang GD, Chen Y, Lin P, Wang SH, Zou ZH (2009) Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp. Mol Biol Rep 36:1149–1157

    Article  PubMed  CAS  Google Scholar 

  54. Pines J (1996) Reaching for a role for the Cks proteins. Curr Biol 6:1399–1402

    Article  PubMed  CAS  Google Scholar 

  55. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    Article  PubMed  CAS  Google Scholar 

  56. Mezquita J, Oliva R, Mezquita C (1987) New ubiquitin mRNA expressed during chicken spermiogenesis. Nucleic Acids Res 15:9604

    Article  PubMed  CAS  Google Scholar 

  57. Mezquita J, Mezquita C (1991) Characterization of a chicken polyubiquitin gene preferentially expressed during spermatogenesis. FEBS Lett 279:69–72

    Article  PubMed  CAS  Google Scholar 

  58. Mezquita J, López-Ibor B, Pau M, Mezquita C (1993) Intron and intronless transcription of the chicken polyubiquitin gene UbII. FEBS Lett 319:244–248

    Article  PubMed  CAS  Google Scholar 

  59. Rocamora N, Agell N (1990) Methylation of chick UbI and UbII polyubiquitin genes and their differential expression during spermatogenesis. Biochem J 267:821–829

    PubMed  CAS  Google Scholar 

  60. Mezquita J, Pau M, Mezquita C (1997) Heat-shock inducible polyubiquitin gene UbI undergoes alternative initiation and alternative splicing in mature chicken testes. Mol Reprod Dev 46:471–475

    Article  PubMed  CAS  Google Scholar 

  61. Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 11:863–875

    Article  PubMed  CAS  Google Scholar 

  62. Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Princeton

    Google Scholar 

  63. Esteban D, Garcia-Valero J, Mezquita J, Mezquita C (1989) Ubiquitinated proteins in the nucleoprotamine complex of mature chicken spermatozoa. J Cell Biol 109:69

    Google Scholar 

  64. Henault MA, Killian GJ, Kavanaugh J, Griel LC (1995) Effect of accessory sex gland fluid from bulls of differing fertilities on the ability of cauda epididymal sperm to penetrate zona-free bovine oocytes. Bio Reprod 52:390–397

    Article  CAS  Google Scholar 

  65. Moura AA, Chapman DA, Koc H, Killian GJ (2007) A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci 98:169–188

    Article  PubMed  CAS  Google Scholar 

  66. Hou XL, Mao Q, He L, Gong YN, Qu D, Wang Q (2010) Accessory sex gland proteins affect spermatophore digestion rate and spermatozoa acrosin activity in Eriocheir sinensis. J Crustac Biol 30:435–440

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30972241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Wang.

Additional information

Qun Wang, Lili Chen, and Ying Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1474_MOESM1_ESM.jpg

Fig. S1. Nucleotide and deduced amino acid sequences of Es-UBS27. The nucleotide is numbered from the first base at the 5′ end. The first methionine (M) is numbered as the first deduced amino acid. The UB sequence is shown in italics. The black circle indicates the cysteines, which comprise a zinc finger. The black oval indicates the polyadenylation sequence. The diglycine motif is bold. (JPEG 1416 kb)

11033_2012_1474_MOESM2_ESM.jpg

Fig. S2. Nucleotide and deduced amino acid sequences of Es-UBL40. The nucleotide is numbered from the first base at the 5′ end. The first methionine (M) is numbered as the first deduced amino acid. The UB sequence is shown in italics. The black circle shows the cysteines, which comprise a zinc finger. The black oval indicates the nuclear localization signal. Underlying shows the polyadenylation sequence. (JPEG 1299 kb)

11033_2012_1474_MOESM3_ESM.jpg

Fig. S3. Multiple alignment of the Es-UBS27 amino acid sequences with UBS27 from BLASTp homology search results.. Identical (*) and similar (. or :) residues are indicated. Gaps (-) were introduced to maximize the alignment. E. sinensis is marked by the black frame. (JPEG 1806 kb)

11033_2012_1474_MOESM4_ESM.jpg

Fig. S4. Multiple alignment of the Es-UBL40 amino acid sequences with UBL40 from BLASTp homology search results. Identical (*) and similar (. or :) residues are indicated. Gaps (-) were introduced to maximize the alignment. E. sinensis is marked by the black frame. (JPEG 1832 kb)

11033_2012_1474_MOESM5_ESM.jpg

Fig. S5. Neighbor-joining phylogenetic tree for UBS27 mRNA sequences reported in representative taxa. Protein abbreviations and corresponding GenBank accession numbers are as follows: Eriocheir sinensis (HM177456), Danio rerio (BC049478), Gallus gallus (NP990284), Homo sapiens (BC053371), Scylla paramamosain (GQ903729), Portunus pelagicus (EF110526), Ixodes scapularis (DQ066288), Ornithodoros parkeri (EF633956), Rana catesbeiana (BT081468), Callithrix jacchus (XM002747206), Salmo salar (BT043890), Rattus norvegicus(XM574121.3), Dermacentor variabilis (ACF35544), Mus musculus (NM024277.2), Epinephelus coioides(AF502248), Oncorhynchus mykiss(BT074005), Anoplopoma fimbria (BT083357), Rhipicephalus sanguineus (EZ406189), Bos Taurus (XM001787994.2), Pongo abelii (XM002812024), Macaca mulatta (XM001087600.2). (JPEG 345 kb)

11033_2012_1474_MOESM6_ESM.jpg

Fig. S6. Neighbor-joining phylogenetic tree for UBL40 mRNA sequences reported in representative taxa. Protein abbreviations and corresponding GenBank accession numbers are as follows: Eriocheir sinensis (HM177457), Branchiostoma belcheri (AF395864), Biomphalaria glabrata (AF268491), Crassostrea hongkongensis (GU144019), Salmo salar (NM001139743), Phlebotomus papatasi (EU032350), Homo sapiens (AF348700), Oncorhynchus mykiss (NM001124194), Danio rerio (NM001037113), Bubalus bubalis (AY842446), Ictalurus punctatus (AF401597), Gallus gallus (NM205075), Macaca mulatta (XM001118431), Rattus norvegicus (BC061544), Bufo gargarizans (DQ855628). (JPEG 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Chen, L., Wang, Y. et al. Expression characteristics of two ubiquitin/ribosomal fusion protein genes in the developing testis, accessory gonad and ovary of Chinese mitten crab, Eriocheir sinensis . Mol Biol Rep 39, 6683–6692 (2012). https://doi.org/10.1007/s11033-012-1474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1474-6

Keywords

Navigation