Skip to main content
Log in

Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In order to identify genes involved in oogenesis and spermatogenesis in penaeid shrimp Marsupenaeus japonicus, a modified annealing control primer (ACP) system was adapted to identify genes differentially expressed in ovary and testis at different developmental stages. By using 20 pairs of ACP primers, 8 differentially expressed genes were obtained. One of these genes is ubiquitin-conjugating enzyme E2r (UBE2r). Bioinformatics analyses show that this gene encodes a protein of 241 amino acids with a predicted molecular mass of 27.4 kDa. Real time PCR analyses demonstrated that the expression level changed significantly in the developing testis and ovary. In the stage 2 of testis, it reached its highest expression level, the lowest expression level present in the stage 1 of ovary. The significantly different expression levels in developing testis and ovary suggest that UBE2r has an important role in oogenesis and spermatogenesis. This article is the first report of UBE2r in crustaceans and also is the first report showing that UBE2r is differentially expressed at different stages of the developing ovary and testis in an animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Quinitio ET, Hara A, Yamauchi K, Mizushima T, Fuji A (1989) Identification and characterization of vitellin in a hermophrodite shrimp, Pandalus kessleri. Comp Biochem Physiol B Biochem Mol Biol 94:445–451. doi:10.1016/0305-0491(89)90179-X

    Article  Google Scholar 

  2. Khayat M, Babin PJ, Funkenstein B, Sammar M, Nagasawa H, Tietz A et al (2001) Molecular characterization and high expression during oocyte development of a shrimp ovarian cortical rod protein homologous to insect intestinal peritrophins. Biol Reprod 64:1090–1099. doi:10.1095/biolreprod64.4.1090

    Article  PubMed  CAS  Google Scholar 

  3. Yamano K, Qiu GF, Unuma T (2004) Molecular cloning and ovarian expression profiles of thrombospondin, a major component of cortical rods in mature oocytes of penaeid shrimp, Marsupenaeus japonicus. Biol Reprod 70:1670–1678. doi:10.1095/biolreprod.103.025379

    Article  PubMed  CAS  Google Scholar 

  4. Qiu GF, Yamano K, Unuma T (2005) Cathepsin C transcripts are differentially expressed in the final stages of oocyte maturation in kuruma prawn Marsupenaeus japonicus. Comp Biochem Physiol B 140:171–181. doi:10.1016/j.cbpc.2004.09.027

    Article  PubMed  Google Scholar 

  5. Zhang ZP, Wang YL, Jiang YH, Lin P, Jia XW, Zou ZH (2007) Ribosomal protein L24 is differentially expressed in ovary and testis of the marine shrimp Marsupenaeus japonicus. Comp Biochem Physiol B 147:466–474. doi:10.1016/j.cbpb.2007.02.013

    Article  PubMed  Google Scholar 

  6. Ohira T, Hasegawa Y, Tominaga S, Okuno A, Nagasawa H (2003) Molecular cloning and expression analysis of cDNAs encoding androgenic gland hormone precursors from two porcellionidae species, Porcellio scaber and P. dilatatus. Zool Sci 20(1):75–81. doi:10.2108/zsj.20.75

    Article  PubMed  CAS  Google Scholar 

  7. Manor R, Weil S, Oren S, Glazer L, Aflalo ED, Ventura T et al (2007) Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 150(2):326–336. doi:10.1016/j.ygcen.2006.09.006

    Article  PubMed  CAS  Google Scholar 

  8. Hwang IT, Kim YJ, Kim SH, Kwak CI, Gu YY, Chun JY (2003) Annealing control primer system for improving specificity of PCR amplification. Biotechniques 35:1180–1184

    PubMed  CAS  Google Scholar 

  9. Xie FJ, Zhang ZP, Lin P, Wang YL (2007) Application of annealing control primer system to cloning of differentially expressed genes. Mark Sci 31(5):70–75. In Chinese

    Google Scholar 

  10. Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148. doi:10.1006/scdb.2000.0164

    Article  PubMed  CAS  Google Scholar 

  11. Haas AL, Warms JVB, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme: mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548

    PubMed  CAS  Google Scholar 

  12. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335. doi:10.1126/science.2842867

    Article  PubMed  CAS  Google Scholar 

  13. Spees JL, Chang SA, Mykles DL, Snyder MJ, Chang ES (2003) Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones 8(3):258–264. doi:10.1379/1466-1268(2003)008<0258:MCMCAP>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  14. Hochstrasser M, Ellison MJ, Chau V, Varshavsky A (1991) The short-lived MATa2 transcriptional regulator is ubiquitinated in vivo. Proc Natl Acad Sci USA 88:4606–4610. doi:10.1073/pnas.88.11.4606

    Article  PubMed  CAS  Google Scholar 

  15. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci 114:1665–1675

    PubMed  CAS  Google Scholar 

  16. Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260. doi:10.1095/biolreprod.102.010975

    Article  PubMed  CAS  Google Scholar 

  17. Sawada H, Sakai N, Abe Y, Tanaka E, Takahashi Y, Fujino J et al (2002) Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proc Natl Acad Sci USA 99:1223–1228. doi:10.1073/pnas.032389499

    Article  PubMed  CAS  Google Scholar 

  18. Sakai N, Sawada MT, Sawada H (2004) Non-traditional roles of ubiquitin-proteasome system in fertilization and gametogenesis. Int J Biochem Cell Biol 36(5):776–784. doi:10.1016/S1357-2725(03)00263-2

    Article  PubMed  CAS  Google Scholar 

  19. Semplici F, Meggio F, Pinna LA, Oliviero S (2002) CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation. Oncogene 21(25):3978–3987. doi:10.1038/sj.onc.1205574

    Article  PubMed  CAS  Google Scholar 

  20. Block K, Boyer TG, Yew PR (2001) Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J Biol Chem 276(44):41049–41058. doi:10.1074/jbc.M106453200

    Article  PubMed  CAS  Google Scholar 

  21. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335. doi:10.1126/science.2842867

    Article  PubMed  CAS  Google Scholar 

  22. Schwob E, Böhm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79(2):233–244. doi:10.1016/0092-8674(94)90193-7

    Article  PubMed  CAS  Google Scholar 

  23. Yew PR, Kirschner MW (1997) Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277(5332):1672–1676. doi:10.1126/science.277.5332.1672

    Article  PubMed  CAS  Google Scholar 

  24. Reymond F, Wirbelauer C, Krek W (2000) Association of human ubiquitin-conjugating enzyme CDC34 with the mitotic spindle in anaphase. J Cell Sci 113(Pt 10):1687–1694

    PubMed  CAS  Google Scholar 

  25. Pati D, Meistrich ML, Plon SE (1999) Human Cdc34 and Rad6B ubiquitin-conjugating enzymes target repressors of cyclic AMP-induced transcription for proteolysis. Mol Cell Biol 19(7):5001–5013

    PubMed  CAS  Google Scholar 

  26. Merlo E, Romano A (2007) Long-term memory consolidation depends on proteasome activity in the crab Chasmagnathus. Neuroscience 147(1):46–52. doi:10.1016/j.neuroscience.2007.04.022

    Article  PubMed  CAS  Google Scholar 

  27. Spees JL, Chang SA, Mykles DL, Snyder MJ, Chang ES (2003) Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones 8(3):258–264. doi:10.1379/1466-1268(2003)008<0258:MCMCAP>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  28. Koenders A, Yu X, Chang ES, Mykles DL (2002) Ubiquitin and actin expression in claw muscles of land crab, Gecarcinus lateralis, and American lobster, Homarus americanus: differential expression of ubiquitin in two slow muscle fiber types during molt-induced atrophy. J Exp Zool 292(7):618–632. doi:10.1002/jez.10081

    Article  PubMed  CAS  Google Scholar 

  29. Xiang SC, Hyuk S, Nam HK (2005) Identification of metaphase II-specific gene transcripts in porcine oocytes and their expression in early stage embryos reproduction. Reprod Fertil Dev 17:625–631. doi:10.1071/RD05019

    Article  Google Scholar 

  30. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, USA

    Google Scholar 

  31. Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S et al (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387. doi:10.1093/nar/gkg087

    Article  PubMed  CAS  Google Scholar 

  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  33. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448. doi:10.1073/pnas.85.8.2444

    Article  PubMed  CAS  Google Scholar 

  34. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601. doi:10.1677/jme.1.01755

    Article  PubMed  CAS  Google Scholar 

  35. Jentsch S (1992) The ubiquitin-conjugation system. Annu Rev Genet 26:179–207. doi:10.1146/annurev.ge.26.120192.001143

    Article  PubMed  CAS  Google Scholar 

  36. Michael WM, Newport J (1998) Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282:1886–1889. doi:10.1126/science.282.5395.1886

    Article  PubMed  CAS  Google Scholar 

  37. Grondahl C, Lessl M, Faerge I, Hegele-Hartung C, Wassermann K, Ottesen JL (2000) Meiosis-activating sterol-mediated resumption of meiosis in mouse oocytes in vitro is influenced by protein synthesis inhibition and cholera toxin. Biol Reprod 62:775–780. doi:10.1095/biolreprod62.3.775

    Article  PubMed  CAS  Google Scholar 

  38. Wang YL, Zhang ZP, Li SJ (1996) Basic protein changes during spermatogenesis in Metapenaeus ensis. J Xiamen Univ Nat Sci 35:947–951. In Chinese

    CAS  Google Scholar 

  39. Jiang YH, Yan SF (2004) Cytochemical studies on oogenesis of Penaeus vannamei. J Jimei Univ Nat Sci 9(2):116–121. In Chinese

    Google Scholar 

  40. Zhang ZP, Wang YL (1993) Studies on anatomy, histology and histochemistry of the male reproductive system of Penaeus penicillatus, Penaeus japonicus and Metapenaeus ensis. J Xiamen Fish Coll 18(2):29–38. In Chinese

    Google Scholar 

  41. Clermont Y, Oko R, Hermo L (1993) Cell biology of mammalian spermatogenesis. In: Desjardins C, Ewing LL (eds) The cell and molecular biology of the testis. Oxford University Press, Oxford, UK, pp 332–376

    Google Scholar 

  42. Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R et al (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 11:863–875. doi:10.1101/gad.11.7.863

    Article  PubMed  CAS  Google Scholar 

  43. Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M et al (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810. doi:10.1016/S0092-8674(00)80154-3

    Article  PubMed  CAS  Google Scholar 

  44. Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, USA

    Google Scholar 

  45. Sekiguchi S, Kwon J, Yoshida E, Hamasaki H, Ichinose S, Hideshima M et al (2006) Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol 169(5):1722–1729. doi:10.2353/ajpath.2006.060301

    Article  PubMed  CAS  Google Scholar 

  46. Noma T, Kanai Y, Kanai-Azuma M, Ishii M, Fujisawa M, Kurohmaru M et al (2002) Stage- and sex-dependent expressions of Usp9x, an X-linked mouse ortholog of Drosophila Fat facets, during gonadal development and oogenesis in mice. Mech Dev 119(Suppl 1):S91–S95. doi:10.1016/S0925-4773(03)00098-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30070597, 30571430). We thank Mr. Scot Libants (Department of Fisheries & Wildlife, Michigan State University, East Lansing, Michigan, USA) and Mr. Ion Beldorth (Department of Chemistry & Biochemistry, Texas State University, San Marcos, Texas, USA) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziping Zhang or Yilei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, B., Zhang, Z., Wang, Y. et al. Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus . Mol Biol Rep 36, 1149–1157 (2009). https://doi.org/10.1007/s11033-008-9291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9291-7

Keywords

Navigation