Skip to main content
Log in

Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a large set of microsatellite markers based on publicly available BAC-end sequences (BESs), and to evaluate their transferability, discriminating capacity of genotypes and mapping ability in Citrus. A set of 1,281 simple sequence repeat (SSR) markers were developed from the 46,339 Citrus clementina BAC-end sequences (BES), of them 20.67% contained SSR longer than 20 bp, corresponding to roughly one perfect SSR per 2.04 kb. The most abundant motifs were di-nucleotide (16.82%) repeats. Among all repeat motifs (TA/AT)n is the most abundant (8.38%), followed by (AG/CT)n (4.51%). Most of the BES-SSR are located in the non-coding region, but 1.3% of BES-SSRs were found to be associated with transposable element (TE). A total of 400 novel SSR primer pairs were synthesized and their transferability and polymorphism tested on a set of 16 Citrus and Citrus relative’s species. Among these 333 (83.25%) were successfully amplified and 260 (65.00%) showed cross-species transferability with Poncirus trifoliata and Fortunella sp. These cross-species transferable markers could be useful for cultivar identification, for genomic study of Citrus, Poncirus and Fortunella sp. Utility of the developed SSR marker was demonstrated by identifying a set of 118 markers each for construction of linkage map of Citrus reticulata and Poncirus trifoliata. Genetic diversity and phylogenetic relationship among 40 Citrus and its related species were conducted with the aid of 25 randomly selected SSR primer pairs and results revealed that citrus genomic SSRs are superior to genic SSR for genetic diversity and germplasm characterization of Citrus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BES:

Citrus clementina BAC end sequences

GSSs:

Genome survey sequences

GO:

Gene ontology

SSR:

Simple sequences repeat

References

  1. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  PubMed  CAS  Google Scholar 

  2. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  PubMed  Google Scholar 

  3. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    Article  PubMed  CAS  Google Scholar 

  4. Mayer C, Leese F, Tollrian R (2010) Genome-wide analysis of tandem repeats in Daphnia pulex—a comparative approach. BMC Genomics 11:277

    Article  PubMed  Google Scholar 

  5. Shanker A, Bhargava A, Bajpai R, Singh S, Srivastava S, Sharma V (2007) Bioinformatically mined simple sequence repeats in UniGene of Citrus sinensis. Sci Hortic 113:353–361

    Article  CAS  Google Scholar 

  6. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  7. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177:2481–2491

    Article  PubMed  CAS  Google Scholar 

  8. Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton SW, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S (2008) Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome 51:294–302

    Article  PubMed  CAS  Google Scholar 

  9. Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  PubMed  CAS  Google Scholar 

  10. Pan L, Xia Q, Quan Z, Liu H, Ke W, Ding Y (2010) Development of novel EST-SSRs from Sacred Lotus (Nelumbo nucifera Gaertn) and their utilization for the genetic diversity analysis of N. nucifera. J Hered 101:71–82

    Article  PubMed  CAS  Google Scholar 

  11. Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Kaur S, Li XI, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Walkiewicz M, Spangenberg GC, Edwards D (2007) Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol Ecol Notes 7:886–889

    Article  CAS  Google Scholar 

  12. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  PubMed  CAS  Google Scholar 

  13. Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Li XI, Lim GAC, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Spangenberg GC, Edwards D, Batley J (2007) Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species amplification. Mol Ecol Notes 7:697–700

    Article  CAS  Google Scholar 

  14. Iniguez-Luy FL, Voort AV, Osborn TC (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    Article  PubMed  CAS  Google Scholar 

  15. Ling AE, Kaur J, Burgess B, Hand M, Hopkins CJ, Li XI, Love CG, Vardy M, Walkiewicz M, Spangenberg G, Edwards D, Batley J (2007) Characterization of simple sequence repeat markers derived in silico from Brassica rapa bacterial artificial chromosome sequences and their application in Brassica napus. Mol Ecol Notes 7:273–277

    Article  CAS  Google Scholar 

  16. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  PubMed  CAS  Google Scholar 

  17. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  18. Peng J, Lapitan N (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    Article  PubMed  CAS  Google Scholar 

  19. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  20. Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  21. Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  PubMed  CAS  Google Scholar 

  22. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  23. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. TAG Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  24. Castelo AT, Martins W, Gao GR (2002) TROLL—tandem repeat occurrence locator. Bioinformatics 18:634–636

    Article  PubMed  CAS  Google Scholar 

  25. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287

    Article  PubMed  Google Scholar 

  26. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. TAG Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  27. Jiang D, Zhong G-Y, Hong Q-B (2006) Analysis of microsatellites in citrus unigenes. Acta Genetica Sinica 33:345–353

    Article  PubMed  CAS  Google Scholar 

  28. Novelli VM, Cristofani M, Souza AA, Machado MA (2006) Development and characterization of polymorphic microsatellite markers for the sweet orange (Citrus sinensis L. Osbeck). Genet Mol Biol 29:90–96

    Article  CAS  Google Scholar 

  29. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46, 000 BAC end sequences. BMC Genomics 9:423

    Article  PubMed  Google Scholar 

  30. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  31. Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. Am J Bot 97:124–129

    Article  Google Scholar 

  32. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  33. Cheng Y-J, Guo W–W, Yi H-L, Pang X-M, Deng X (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177–178

    Article  Google Scholar 

  34. Ruiz C, Paz Breto M, Asíns MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    Article  CAS  Google Scholar 

  35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  36. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  37. Labarga A, Valentin F, Anderson M, Lopez R (2007) Web services at the European bioinformatics institute. Nucleic Acids Res 35:W6–W11

    Article  PubMed  Google Scholar 

  38. Rohlf FJ (1998) NTSYSpc: numerical taxonomy and multivariate analysis system version 2.02. Exeter Software, Setauket

    Google Scholar 

  39. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  40. Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176

    Article  CAS  Google Scholar 

  41. Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356

    PubMed  CAS  Google Scholar 

  42. Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L. BMC Res Notes 3:42

    Article  PubMed  Google Scholar 

  43. Leclercq S, Rivals E, Jarne P (2007) Detecting microsatellites within genomes: significant variation among algorithms. BMC Bioinform 8:125

    Article  Google Scholar 

  44. Lai C, Yu Q, Hou S, Skelton R, Jones M, Lewis K, Murray J, Eustice M, Guan P, Agbayani R, Moore P, Ming R, Presting G (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1–12

    Article  PubMed  CAS  Google Scholar 

  45. Gao L, Tang J, Li H, Jia J (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261

    Article  CAS  Google Scholar 

  46. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    PubMed  CAS  Google Scholar 

  47. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  Google Scholar 

  48. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  49. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  50. Labbé J, Murat C, Morin E, Le Tacon F, Martin F (2011) Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Curr Genet 57:75–88

    Article  PubMed  Google Scholar 

  51. Victoria F, da Maia L, de Oliveira A (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15

    Article  PubMed  Google Scholar 

  52. Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T (2001) Micron a microsatellite-targeting transposable element in the rice genome. Mol Genet Genomics 266:471–480

    Article  PubMed  CAS  Google Scholar 

  53. Ramsay L, Macaulay M, Cardle L, Morgante M, Ivanissevich SD, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425

    Article  PubMed  CAS  Google Scholar 

  54. Tay W, Behere G, Batterham P, Heckel D (2010) Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol Biol 10:144

    Article  PubMed  Google Scholar 

  55. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    Article  PubMed  CAS  Google Scholar 

  56. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  PubMed  CAS  Google Scholar 

  57. Yong L, De-Chun L, Bo W, Zhong-Hai S (2006) Genetic diversity of pummelo (Citrus grandis Osbeck) and its relatives based on simple sequence repeat markers. Chin J Agric Biotechnol 3:119–126

    Article  Google Scholar 

  58. Zhang TP, Peng SL, Wang ZF, Ling DH, Gan LS (2001) Genetic relationships among cultivars of citrus maxima (burm.) Merr. using RAPD marker technique. J Trop Sub Trop Bot 9:322–328

    CAS  Google Scholar 

  59. Bernet GP, Margaix C, Jacas J, Carbonell EA, Asins MJ (2005) Genetic analysis of citrus leafminer susceptibility. Theor Appl Genet 110:1393–1400

    Article  PubMed  CAS  Google Scholar 

  60. Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836

    PubMed  CAS  Google Scholar 

  61. Siviero A, Cristofani M, Furtado EL, Garcia AA, Coelho AS, Machado MA (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47:23–28

    Article  PubMed  Google Scholar 

  62. Weber CA, Moore GA, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  63. Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. TAG Theor Appl Genet 89:606–614

    Article  CAS  Google Scholar 

  64. Durham RE, Liou PC, Gmitter FG, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. TAG Theor Appl Genet 84:39–48

    Article  CAS  Google Scholar 

  65. Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. TAG Theor Appl Genet 84:49–56

    Article  CAS  Google Scholar 

  66. Moore GA, Tozlu I, Weber CA, Guy CL (2000) Mapping quantitative trait loci for salt tolerance and cold tolerance in Citrus grandis (L.) Osb. × Poncirus trifoliata (L.) Raf hybrid populations. Acta Hortic 535:37–45

    CAS  Google Scholar 

  67. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN (2004) EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 108:1010–1016

    Article  PubMed  CAS  Google Scholar 

  68. Pang XM, Hu CG, Deng XX (2003) Phylogenetic relationships among citrus and its relatives as reveled by SSR markers. Yi Chuan Bao 30(1):81–87

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yun-Jiang Cheng for discussing on the sampling strategy. This research was financially supported by the Ministry of Science and Technology of China (Nos. 2011CB100600, 2011AA100205) and the national NSF of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, M.K., Chai, L., Mayer, C. et al. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Mol Biol Rep 39, 5373–5386 (2012). https://doi.org/10.1007/s11033-011-1338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1338-5

Keywords

Navigation