Skip to main content
Log in

TGF-β superfamily: how does it regulate testis development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Testis development is a highly regulated sequence of developmental process that spans from the establishment of germ cell lineage during embryonic development to the periodic wave of spermatogenesis in adulthood. The normal development of testes and the fertility of male animals require specific cell types to respond correctly at a specific time point, the process of which is precisely regulated by various factors. Several members of the transforming growth factor-β superfamily are shown to be the key mediators. They act as the extracellular ligand of signaling transduction that regulates the proliferation, differentiation, apoptosis and other cell behaviors to help coordinate the physiology of the cells to the overall development of the testis and the organism. This paper reviews the current understanding of some of TGF-βs’ major regulatory roles in the overall process of testis development, analyzes the current studies and their limitations and points out the research areas that need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhao GQ, Garbers DL (2002) Male germ cell specification and differentiation. Dev Cell 2(5):537–547. doi:10.1016/S1534-5807(02)00173-9

    Article  PubMed  CAS  Google Scholar 

  2. Loveland KL, Hime G (2005) TGFbeta superfamily members in spermatogenesis: setting the stage for fertility in mouse and Drosophila. Cell Tissue Res 322(1):141–146. doi:10.1007/s00441-005-0008-0

    Article  PubMed  CAS  Google Scholar 

  3. Itman C, Mendis S, Barakat B, Loveland KL (2006) All in the family: TGF-beta family action in testis development. Reproduction 132:233–246. doi:10.1530/rep.1.01075

    Article  PubMed  CAS  Google Scholar 

  4. McCarrey JR (1993) Development of the germ cell. In: Desjardins C, Ewing LL (eds) Cell and molecular biology of the testis. Oxford University Press, Oxford, pp 58–89

    Google Scholar 

  5. Tres LL, Rosselot C, Kierszenbaum AL (2004) Primordial germ cells: what does it take to be alive? Mol Reprod Dev 68(1):1–4. doi:10.1002/mrd.20056

    Article  PubMed  CAS  Google Scholar 

  6. de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21(6):776–798

    PubMed  Google Scholar 

  7. de Rooij DG (1998) Stem cells in the testis. Int J Exp Pathol 79(2):67–80. doi:10.1046/j.1365-2613.1998.t01-1-00057.x

    Article  PubMed  Google Scholar 

  8. Russell L (1977) Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 148(3):313–328

    Article  PubMed  CAS  Google Scholar 

  9. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700. doi:10.1016/S0092-8674(03)00432-X

    Article  PubMed  CAS  Google Scholar 

  10. Moses HL, Branum EL, Proper JA, Robinson RA (1981) Transforming growth factor production by chemically transformed cells. Cancer Res 41(7):2842–2848

    PubMed  CAS  Google Scholar 

  11. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78(9):5339–5343

    Article  PubMed  CAS  Google Scholar 

  12. Kaname S, Ruoslahti E (1996) Betaglycan has multiple binding sites for transforming growth factor-beta 1. Biochem J 315(Pt 3):815–820

    PubMed  CAS  Google Scholar 

  13. Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267(27):19027–19030

    PubMed  CAS  Google Scholar 

  14. Zhang H, Shaw AR, Mak A, Letarte M (1996) Endoglin is a component of the transforming growth factor (TGF)-beta receptor complex of human pre-B leukemic cells. J Immunol 156(2):564–573

    PubMed  CAS  Google Scholar 

  15. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594. doi:10.1074/jbc.274.2.584

    Article  PubMed  CAS  Google Scholar 

  16. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7(12):1191–1204. doi:10.1046/j.1365-2443.2002.00599.x

    Article  PubMed  CAS  Google Scholar 

  17. Aubin J, Davy A, Soriano P (2004) In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 18(12):1482–1494. doi:10.1101/gad.1202604

    Article  PubMed  CAS  Google Scholar 

  18. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436

    Article  PubMed  CAS  Google Scholar 

  19. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14(7):1053–1063. doi:10.1210/me.14.7.1053

    Article  PubMed  CAS  Google Scholar 

  20. Okamura D, Hayashi K, Matsui Y (2005) Mouse epiblasts change responsiveness to BMP4 signal required for PGC formation through functions of extraembryonic ectoderm. Mol Reprod Dev 70(1):20–29. doi:10.1002/mrd.20136

    Article  PubMed  CAS  Google Scholar 

  21. Fujiwara T, Dunn NR, Hogan BL (2001) Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci USA 98(24):13739–13744. doi:10.1073/pnas.241508898

    Article  PubMed  CAS  Google Scholar 

  22. de Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, Li E, Lawson KA, Mummery CL (2004) BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 18(15):1838–1849. doi:10.1101/gad.294004

    Article  PubMed  Google Scholar 

  23. de Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, Li E, Lawson KA, Mummery CL (2004) BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 18:1838–1849

    Article  PubMed  Google Scholar 

  24. Arnold SJ, Maretto S, Islam A, Bikoff EK, Robertson EJ (2006) Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev Biol 296(1):104–118. doi:10.1016/j.ydbio.2006.04.442

    Article  PubMed  CAS  Google Scholar 

  25. Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104(1–2):61–67. doi:10.1016/S0925-4773(01)00367-7

    Article  PubMed  CAS  Google Scholar 

  26. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12(1):107–119. doi:10.1101/gad.12.1.107

    Article  PubMed  CAS  Google Scholar 

  27. Dudley BM, Runyan C, Takeuchi Y, Schaible K, Molyneaux K (2007) BMP signaling regulates PGC numbers and motility in organ culture. Mech Dev 124(1):68–77. doi:10.1016/j.mod.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  28. Dudley B, Palumbo C, Nalepka J, Molyneaux K (2010) BMP signaling controls formation of a primordial germ cell niche within the early genital ridges. Dev Biol 343(1–2):84–93. doi:10.1016/j.ydbio.2010.04.011

    Article  PubMed  CAS  Google Scholar 

  29. Godin I, Wylie CC (1991) TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 113(4):1451–1457

    PubMed  CAS  Google Scholar 

  30. Richards AJ, Enders GC, Resnick JL (1999) Activin and TGFbeta limit murine primordial germ cell proliferation. Dev Biol 207(2):470–475. doi:10.1006/dbio.1998.9174

    Article  PubMed  CAS  Google Scholar 

  31. Chuva de Sousa Lopes SM, van den Driesche S, Carvalho RL, Larsson J, Eggen B, Surani MA, Mummery CL (2005) Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. Dev Biol 284(1):194–203. doi:10.1016/j.ydbio.2005.05.019

    Article  PubMed  CAS  Google Scholar 

  32. Ross AJ, Tilman C, Yao H, MacLaughlin D, Capel B (2003) AMH induces mesonephric cell migration in XX gonads. Mol Cell Endocrinol 211(1–2):1–7. doi:10.1016/j.mce.2003.09.021

    Article  PubMed  CAS  Google Scholar 

  33. Behringer RR, Finegold MJ, Cate RL (1994) Müllerian-inhibiting substance function during mammalian sexual development. Cell 79(3):415–425. doi:10.1016/0092-8674(94)90251-8

    Article  PubMed  CAS  Google Scholar 

  34. Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, Behringer RR (1996) Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 10(20):2577–2587. doi:10.1101/gad.10.20.2577

    Article  PubMed  CAS  Google Scholar 

  35. Clarke TR, Hoshiya Y, Yi SE, Liu X, Lyons KM, Donahoe PK (2001) Müllerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces SMAD6 expression. Mol Endocrinol 15(6):946–959. doi:10.1210/me.15.6.946

    Article  PubMed  CAS  Google Scholar 

  36. Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR (2003) Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet 32(3):408–410. doi:10.1038/ng1003

    Article  Google Scholar 

  37. Olaso R, Pairault C, Boulogne B, Durand P, Habert R (1998) Transforming growth factor beta1 and beta2 reduce the number of gonocytes by increasing apoptosis. Endocrinology 139(2):733–740. doi:10.1210/en.139.2.733

    Article  PubMed  CAS  Google Scholar 

  38. Moreno SG, Attali M, Allemand I, Messiaen S, Fouchet P, Coffigny H, Romeo PH, Habert R (2010) TGF beta signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev Biol 342(1):74–84. doi:10.1016/j.ydbio.2010.03.007

    Article  PubMed  CAS  Google Scholar 

  39. Archambeault DR, Yao HH (2010) Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci USA 107(23):10526–10531. doi:10.1073/pnas.1000318107

    Article  PubMed  CAS  Google Scholar 

  40. Mendis SHS, Meachem SJ, Sarraj MA, Loveland KL (2011) Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol Reprod. 84(2):379–391. doi:10.1095/biolreprod.110.086231

    Article  PubMed  CAS  Google Scholar 

  41. Puglisi R, Montanari M, Chiarella P, Stefanini M, Boitani C (2004) Regulatory role of BMP2 and BMP7 in spermatogonia and Sertoli cell proliferation in the immature mouse. Eur J Endocrinol 151(4):511–520. doi:10.1530/eje.0.1510511

    Article  PubMed  CAS  Google Scholar 

  42. Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S (2003) Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci 116(Pt 16):3363–3372. doi:10.1242/jcs.00650

    Article  PubMed  CAS  Google Scholar 

  43. Itman C, Loveland KL (2008) SMAD expression in the testis: an insight into BMP regulation of spermatogenesis. Dev Dyn 237(1):97–111. doi:10.1002/dvdy.21401

    Article  PubMed  CAS  Google Scholar 

  44. Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL (1996) The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 10(13):1657–1669. doi:10.1101/gad.10.13.1657

    Article  PubMed  CAS  Google Scholar 

  45. Hu J, Chen YX, Wang D, Qi X, Li TG, Hao J, Mishina Y, Garbers DL, Zhao GQ (2004) Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Dev Biol 276(1):158–171. doi:10.1016/j.ydbio.2004.08.034

    Article  PubMed  CAS  Google Scholar 

  46. Zhao GQ, Liaw L, Hogan BL (1994) Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 125(6):1103–1112

    Google Scholar 

  47. Zhao GQ, Chen YX, Liu XM, Xu Z, Qi X (2001) Mutation in Bmp7 exacerbates the phenotype of Bmp8a mutants in spermatogenesis and epididymis. Dev Biol 240(1):212–222. doi:10.1006/dbio.2001.0448

    Article  PubMed  CAS  Google Scholar 

  48. Chen MY, Carpenter D, Zhao GQ (1999) Expression of bone morphogenetic protein 7 in murine epididymis is developmentally regulated. Biol Reprod 60(6):1503–1508. doi:10.1095/biolreprod60.6.1503

    Article  PubMed  CAS  Google Scholar 

  49. Buzzard JJ, Loveland KL, O’Bryan MK, O’Connor AE, Bakker M, Hayashi T, Wreford NG, Morrison JR, de Kretser DM (2004) Changes in circulating and testicular levels of inhibin A and B and activin A during postnatal development in the rat. Endocrinology 145(7):3532–3541. doi:10.1210/en.2003-1036

    Article  PubMed  CAS  Google Scholar 

  50. Mullaney BP, Skinner MK (1993) Transforming growth factor-beta (beta 1, beta 2, and beta 3) gene expression and action during pubertal development of the seminiferous tubule: potential role at the onset of spermatogenesis. Mol Endocrinol 7:67–76. doi:10.1210/me.7.1.67

    Article  PubMed  CAS  Google Scholar 

  51. Xu J, Beyer AR, Walker WH, McGee EA (2003) Developmental and stage-specific expression of Smad2 and Smad3 in rat testis. J Androl 24(2):192–200

    PubMed  CAS  Google Scholar 

  52. de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, Hayashi T, Lin SY, Morrison JR, Loveland KL, Hedger MP (2004) The role of activin, follistatin and inhibin in testicular physiology. Mol Cell Endocrinol 225(1–2):57–64. doi:10.1016/j.mce.2004.07.008

    Article  PubMed  Google Scholar 

  53. Bernard DJ, Chapman SC, Woodruff TK (2001) Mechanisms of inhibin signal transduction. Recent Prog Horm Res 56(1):417–450

    Article  PubMed  CAS  Google Scholar 

  54. Meehan T, Schlatt S, O’Bryan MK, de Kretser DM, Loveland KL (2000) Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev Biol 220(2):225–237. doi:10.1006/dbio.2000.9625

    Article  PubMed  CAS  Google Scholar 

  55. Loveland KL, Bakker M, Meehan T, Christy E, von Schönfeldt V, Drummond A, de Kretser D (2003) Expression of Bambi is widespread in juvenile and adult rat tissues and is regulated in male germ cells. Endocrinology 144(9):4180–4186. doi:10.1210/en.2002-0124

    Article  PubMed  CAS  Google Scholar 

  56. Mithraprabhu S, Mendis S, Meachem SJ, Tubino L, Matzuk MM, Brown CW, Loveland KL (2011) Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo. Biol Reprod 82(5):980–990. doi:10.1095/biolreprod.109.079855

    Article  Google Scholar 

  57. Boitani C, Stefanini M, Fragale A, Morena AR (1995) Activin stimulates Sertoli cell proliferation in a defined period of rat testis development. Endocrinology 136(3):5438–5444. doi:10.1530/REP-08-0140

    Article  PubMed  CAS  Google Scholar 

  58. Fragale A, Puglisi R, Morena AR, Stefanini M, Boitani C (2001) Age-dependent activin receptor expression pinpoints activin A as a physiological regulator of rat Sertoli cell proliferation. Mol Hum Reprod 7(12):1107–1114. doi:10.1093/molehr/7.12.1107

    Article  PubMed  CAS  Google Scholar 

  59. Buzzard JJ, Farnworth PG, De Kretser DM, O’Connor AE, Wreford NG, Morrison JR (2003) Proliferative phase sertoli cells display a developmentally regulated response to activin in vitro. Endocrinology 144(2):474–483. doi:10.1210/en.2002-220595

    Article  PubMed  CAS  Google Scholar 

  60. Barakat B, O’Connor AE, Gold E, de Kretser DM, Loveland KL (2008) Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice. Reproduction 136:345–359

    Article  PubMed  CAS  Google Scholar 

  61. Konrad L, Keilani MM, Laible L, Nottelmann U, Hofmann R (2006) Effects of TGF-betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro. Apoptosis 11(5):739–748. doi:10.1007/s10495-006-5542-z

    Article  PubMed  CAS  Google Scholar 

  62. Damestoy A, Perrard MH, Vigier M, Sabido O, Durand P (2005) Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reprod Biol Endocrinol 3:22. doi:10.1186/1477-7827-3-22

    Article  PubMed  Google Scholar 

  63. Dickson C, Webster DR, Johnson H, Cecilia Millena A, Khan SA (2002) Transforming growth factor-beta effects on morphology of immature rat Leydig cells. Mol Cell Endocrinol 195(1–2):65–77. doi:10.1016/S0303-7207(02)00216-2

    Article  PubMed  CAS  Google Scholar 

  64. Lui WY, Lee WM, Cheng CY (2003) TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. Int J Androl 26(3):147–160. doi:10.1046/j.1365-2605.2003.00410.x

    Article  PubMed  CAS  Google Scholar 

  65. Zhang YQ, He XZ, Zhang JS, Wang RA, Zhou J, Xu RJ (2004) Stage-specific localization of transforming growth factor beta 1 and beta 3 and their receptors during spermatogenesis in men. Asian J Androl 6(2):105–109

    PubMed  CAS  Google Scholar 

  66. Teerds KJ, Dorrington JH (1993) Localization of transforming growth factor beta 1 and beta 2 during testicular development in the rat. Biol Reprod 48(1):40–45. doi:10.1095/biolreprod48.1.40

    Article  PubMed  CAS  Google Scholar 

  67. Jung JC, Park GT, Kim KH, Woo JH, An JM, Kim KC, Chung HY, Bae YS, Park JW, Kang SS, Lee Y (2004) Differential expression of transforming growth factor-beta in the interstitial tissue of testis during aging. J Cell Biochem 92(1):92–98. doi:10.1002/jcb.20042

    Article  PubMed  CAS  Google Scholar 

  68. Yang Y, Han C (2010) GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol 11:78. doi:10.1186/1471-2121-11-78

    Article  PubMed  Google Scholar 

  69. Wu Z, Templeman JL, Smith RA, Mackay S (2005) Effects of glial cell line-derived neurotrophic factor on isolated developing mouse Sertoli cells in vitro. J Anat 206(2):175–184. doi:10.1111/j.1469-7580.2005.00373.x

    Article  PubMed  CAS  Google Scholar 

  70. Zhang J, Li L (2005) BMP signaling and stem cell regulation. Dev Biol 284(1):1–11. doi:10.1016/j.ydbio.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  71. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68(6):2207–2214. doi:10.1095/biolreprod.102.014050

    Article  PubMed  CAS  Google Scholar 

  72. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T (2011) Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 84(1):97–105. doi:10.1095/biolreprod.110.086462

    Article  PubMed  CAS  Google Scholar 

  73. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493. doi:10.1126/science.287.5457.1489

    Article  PubMed  CAS  Google Scholar 

  74. Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, Chan WY, Dym M (2010) Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction 139(6):1011–1020. doi:10.1530/REP-09-0566

    Article  PubMed  CAS  Google Scholar 

  75. Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131(6):1365–1375. doi:10.1242/dev.01025

    Article  PubMed  CAS  Google Scholar 

  76. Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-beta signaling in Drosophila spermatogenesis. Curr Biol 13(23):2065–2072. doi:10.1016/j.cub.2003.10.063

    Article  PubMed  CAS  Google Scholar 

  77. He Z, Jiang J, Kokkinaki M, Dym M (2009) Nodal signaling via an autocrine pathway promotes proliferation of mouse spermatogonial stem/progenitor cells through Smad2/3 and Oct-4 activation. Stem Cells 27(10):2580–2590. doi:10.1002/stem.198

    Article  PubMed  CAS  Google Scholar 

  78. Li MW, Xia W, Mruk DD, Wang CQ, Yan HH, Siu MK, Lui WY, Lee WM, Cheng CY (2006) Tumor necrosis factor-alpha reversibly disrupts the blood–testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol 190:313–329. doi:10.1677/joe.1.06781

    Article  PubMed  CAS  Google Scholar 

  79. Xia W, Wong EW, Mruk DD, Cheng CY (2009) TGF-beta3 and TNFalpha perturb blood–testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 327(1):48–61. doi:10.1016/j.ydbio.2008.11.028

    Article  PubMed  CAS  Google Scholar 

  80. Yan HH, Mruk DD, Lee WM, Cheng CY (2008) Blood–testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J 22(6):1945–1959. doi:10.1096/fj.06-070342

    Article  PubMed  CAS  Google Scholar 

  81. Lui WY, Lee WM, Cheng CY (2001) Transforming growth factor-beta3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 142:1865–1877. doi:10.1210/en.142.5.1865

    Article  PubMed  CAS  Google Scholar 

  82. Xia W, Mruk DD, Lee WM, Cheng CY (2006) Differential interactions between transforming growth factor-b3/TbR1, TAB1, and CD2AP disrupt blood–testis barrier and Sertoli–germ cell adhesion. J Biol Chem 281:16799–16813. doi:10.1074/jbc.M601618200

    Article  PubMed  CAS  Google Scholar 

  83. Wang Y, Lui WY (2009) Opposite effects of interleukin-1a and transforming growth factor-b2 induced stage-specific regulation of junctional adhesion molecule-B gene in Sertoli cells. Endocrinology 150(5):2404–2412. doi:10.1210/en.2008-1239

    Article  PubMed  CAS  Google Scholar 

  84. Lui WY, Wong CH, Mruk DD, Cheng CY (2003) TGF-beta3 regulates the blood–testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 144(4):1139–1142. doi:10.1210/en.2002-0211

    Article  PubMed  CAS  Google Scholar 

  85. Warren DW, Pasupuleti V, Lu Y, Platler BW, Horton R (1990) Tumor necrosis factor and interleukin-1 stimulate testosterone secretion in adult male rat Leydig cells in vitro. J Androl 11(4):353–360

    PubMed  CAS  Google Scholar 

  86. Benahmed M, Sordoillet C, Chauvin MA, de Peretti E, Morera AM (1989) On the mechanisms involved in the inhibitory and stimulating actions of transforming growth factor-beta on porcine testicular steroidogenesis: an in vitro study. Mol Cell Endocrinol 67(2–3):155–164. doi:10.1016/0303-7207(89)90205-0

    Article  PubMed  CAS  Google Scholar 

  87. Li MW, Mruk DD, Lee WM, Cheng CY (2009) Cytokines and junction restructuring events during spermatogenesis in the testis: an emerging concept of regulation. Cytokine Growth Factor Rev 20(4):329–338. doi:10.1016/j.cytogfr.2009.07.007

    Article  PubMed  CAS  Google Scholar 

  88. De SK, Chen HL, Pace JL, Hunt JS, Terranova PF, Enders GC (1993) Expression of tumor necrosis factor-alpha in mouse spermatogenic cells. Endocrinology 133(1):389–396. doi:10.1210/en.133.1.389

    Article  PubMed  CAS  Google Scholar 

  89. Xia W, Cheng CY (2005) TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: an in vivo study. Dev Biol 280(2):321–343. doi:10.1016/j.steroids.2008.11.017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. This project was supported in part by National Natural Science Foundation of China (Nos. 31072198 and 81100393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, YS., Hu, YJ. & Yang, WX. TGF-β superfamily: how does it regulate testis development. Mol Biol Rep 39, 4727–4741 (2012). https://doi.org/10.1007/s11033-011-1265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1265-5

Keywords

Navigation